candle_core/
indexer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
use crate::{Error, Tensor};
use std::ops::{
    Bound, Range, RangeBounds, RangeFrom, RangeFull, RangeInclusive, RangeTo, RangeToInclusive,
};

impl Tensor {
    /// Intended to be use by the trait `.i()`
    ///
    /// ```
    /// # use candle_core::{Tensor, DType, Device, IndexOp};
    /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
    ///
    /// let c = a.i(0..1)?;
    /// assert_eq!(c.shape().dims(), &[1, 3]);
    ///
    /// let c = a.i(0)?;
    /// assert_eq!(c.shape().dims(), &[3]);
    ///
    /// let c = a.i((.., ..2) )?;
    /// assert_eq!(c.shape().dims(), &[2, 2]);
    ///
    /// let c = a.i((.., ..=2))?;
    /// assert_eq!(c.shape().dims(), &[2, 3]);
    ///
    /// # Ok::<(), candle_core::Error>(())
    /// ```
    fn index(&self, indexers: &[TensorIndexer]) -> Result<Self, Error> {
        let mut x = self.clone();
        let dims = self.shape().dims();
        let mut current_dim = 0;
        for (i, indexer) in indexers.iter().enumerate() {
            x = match indexer {
                TensorIndexer::Select(n) => x.narrow(current_dim, *n, 1)?.squeeze(current_dim)?,
                TensorIndexer::Narrow(left_bound, right_bound) => {
                    let start = match left_bound {
                        Bound::Included(n) => *n,
                        Bound::Excluded(n) => *n + 1,
                        Bound::Unbounded => 0,
                    };
                    let stop = match right_bound {
                        Bound::Included(n) => *n + 1,
                        Bound::Excluded(n) => *n,
                        Bound::Unbounded => dims[i],
                    };
                    let out = x.narrow(current_dim, start, stop.saturating_sub(start))?;
                    current_dim += 1;
                    out
                }
                TensorIndexer::IndexSelect(indexes) => {
                    if indexes.rank() != 1 {
                        crate::bail!("multi-dimensional tensor indexing is not supported")
                    }
                    let out = x.index_select(&indexes.to_device(x.device())?, current_dim)?;
                    current_dim += 1;
                    out
                }
                TensorIndexer::Err(e) => crate::bail!("indexing error {e:?}"),
            };
        }
        Ok(x)
    }
}

#[derive(Debug)]
/// Generic structure used to index a slice of the tensor
pub enum TensorIndexer {
    /// This selects the elements for which an index has some specific value.
    Select(usize),
    /// This is a regular slice, purely indexing a chunk of the tensor
    Narrow(Bound<usize>, Bound<usize>),
    /// Indexing via a 1d tensor
    IndexSelect(Tensor),
    Err(Error),
}

impl From<usize> for TensorIndexer {
    fn from(index: usize) -> Self {
        TensorIndexer::Select(index)
    }
}

impl From<&[u32]> for TensorIndexer {
    fn from(index: &[u32]) -> Self {
        match Tensor::new(index, &crate::Device::Cpu) {
            Ok(tensor) => TensorIndexer::IndexSelect(tensor),
            Err(e) => TensorIndexer::Err(e),
        }
    }
}

impl From<Vec<u32>> for TensorIndexer {
    fn from(index: Vec<u32>) -> Self {
        let len = index.len();
        match Tensor::from_vec(index, len, &crate::Device::Cpu) {
            Ok(tensor) => TensorIndexer::IndexSelect(tensor),
            Err(e) => TensorIndexer::Err(e),
        }
    }
}

impl From<&Tensor> for TensorIndexer {
    fn from(tensor: &Tensor) -> Self {
        TensorIndexer::IndexSelect(tensor.clone())
    }
}

trait RB: RangeBounds<usize> {}
impl RB for Range<usize> {}
impl RB for RangeFrom<usize> {}
impl RB for RangeFull {}
impl RB for RangeInclusive<usize> {}
impl RB for RangeTo<usize> {}
impl RB for RangeToInclusive<usize> {}

impl<T: RB> From<T> for TensorIndexer {
    fn from(range: T) -> Self {
        use std::ops::Bound::*;
        let start = match range.start_bound() {
            Included(idx) => Included(*idx),
            Excluded(idx) => Excluded(*idx),
            Unbounded => Unbounded,
        };
        let end = match range.end_bound() {
            Included(idx) => Included(*idx),
            Excluded(idx) => Excluded(*idx),
            Unbounded => Unbounded,
        };
        TensorIndexer::Narrow(start, end)
    }
}

/// Trait used to implement multiple signatures for ease of use of the slicing
/// of a tensor
pub trait IndexOp<T> {
    /// Returns a slicing iterator which are the chunks of data necessary to
    /// reconstruct the desired tensor.
    fn i(&self, index: T) -> Result<Tensor, Error>;
}

impl<T> IndexOp<T> for Tensor
where
    T: Into<TensorIndexer>,
{
    ///```rust
    /// use candle_core::{Tensor, DType, Device, IndexOp};
    /// let a = Tensor::new(&[
    ///     [0., 1.],
    ///     [2., 3.],
    ///     [4., 5.]
    /// ], &Device::Cpu)?;
    ///
    /// let b = a.i(0)?;
    /// assert_eq!(b.shape().dims(), &[2]);
    /// assert_eq!(b.to_vec1::<f64>()?, &[0., 1.]);
    ///
    /// let c = a.i(..2)?;
    /// assert_eq!(c.shape().dims(), &[2, 2]);
    /// assert_eq!(c.to_vec2::<f64>()?, &[
    ///     [0., 1.],
    ///     [2., 3.]
    /// ]);
    ///
    /// let d = a.i(1..)?;
    /// assert_eq!(d.shape().dims(), &[2, 2]);
    /// assert_eq!(d.to_vec2::<f64>()?, &[
    ///     [2., 3.],
    ///     [4., 5.]
    /// ]);
    /// # Ok::<(), candle_core::Error>(())
    /// ```
    fn i(&self, index: T) -> Result<Tensor, Error> {
        self.index(&[index.into()])
    }
}

impl<A> IndexOp<(A,)> for Tensor
where
    A: Into<TensorIndexer>,
{
    ///```rust
    /// use candle_core::{Tensor, DType, Device, IndexOp};
    /// let a = Tensor::new(&[
    ///     [0f32, 1.],
    ///     [2.  , 3.],
    ///     [4.  , 5.]
    /// ], &Device::Cpu)?;
    ///
    /// let b = a.i((0,))?;
    /// assert_eq!(b.shape().dims(), &[2]);
    /// assert_eq!(b.to_vec1::<f32>()?, &[0., 1.]);
    ///
    /// let c = a.i((..2,))?;
    /// assert_eq!(c.shape().dims(), &[2, 2]);
    /// assert_eq!(c.to_vec2::<f32>()?, &[
    ///     [0., 1.],
    ///     [2., 3.]
    /// ]);
    ///
    /// let d = a.i((1..,))?;
    /// assert_eq!(d.shape().dims(), &[2, 2]);
    /// assert_eq!(d.to_vec2::<f32>()?, &[
    ///     [2., 3.],
    ///     [4., 5.]
    /// ]);
    /// # Ok::<(), candle_core::Error>(())
    /// ```
    fn i(&self, (a,): (A,)) -> Result<Tensor, Error> {
        self.index(&[a.into()])
    }
}
#[allow(non_snake_case)]
impl<A, B> IndexOp<(A, B)> for Tensor
where
    A: Into<TensorIndexer>,
    B: Into<TensorIndexer>,
{
    ///```rust
    /// use candle_core::{Tensor, DType, Device, IndexOp};
    /// let a = Tensor::new(&[[0f32, 1., 2.], [3., 4., 5.], [6., 7., 8.]], &Device::Cpu)?;
    ///
    /// let b = a.i((1, 0))?;
    /// assert_eq!(b.to_vec0::<f32>()?, 3.);
    ///
    /// let c = a.i((..2, 1))?;
    /// assert_eq!(c.shape().dims(), &[2]);
    /// assert_eq!(c.to_vec1::<f32>()?, &[1., 4.]);
    ///
    /// let d = a.i((2.., ..))?;
    /// assert_eq!(c.shape().dims(), &[2]);
    /// assert_eq!(c.to_vec1::<f32>()?, &[1., 4.]);
    /// # Ok::<(), candle_core::Error>(())
    /// ```
    fn i(&self, (a, b): (A, B)) -> Result<Tensor, Error> {
        self.index(&[a.into(), b.into()])
    }
}

macro_rules! index_op_tuple {
    ($doc:tt, $($t:ident),+) => {
        #[allow(non_snake_case)]
        impl<$($t),*> IndexOp<($($t,)*)> for Tensor
        where
            $($t: Into<TensorIndexer>,)*
        {
            #[doc=$doc]
            fn i(&self, ($($t,)*): ($($t,)*)) -> Result<Tensor, Error> {
                self.index(&[$($t.into(),)*])
            }
        }
    };
}

index_op_tuple!("see [TensorIndex#method.i]", A, B, C);
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D);
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D, E);
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D, E, F);
index_op_tuple!("see [TensorIndex#method.i]", A, B, C, D, E, F, G);