candle_core/quantized/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
use crate::{CpuStorage, DType, Device, Result, Shape, Storage, Tensor};
use k_quants::*;
use std::borrow::Cow;

#[cfg(target_feature = "avx")]
pub mod avx;
mod dummy_cuda;
mod dummy_metal;
pub mod ggml_file;
pub mod gguf_file;
pub mod k_quants;
#[cfg(feature = "metal")]
pub mod metal;
#[cfg(not(feature = "metal"))]
mod metal {
    pub use super::dummy_metal::*;
}
#[cfg(feature = "cuda")]
pub mod cuda;
#[cfg(not(feature = "cuda"))]
mod cuda {
    pub use super::dummy_cuda::*;
}

#[cfg(target_feature = "neon")]
pub mod neon;
#[cfg(target_feature = "simd128")]
pub mod simd128;
pub mod utils;
use half::f16;

pub use k_quants::GgmlType;

pub struct QTensor {
    storage: QStorage,
    shape: Shape,
}

impl Device {
    fn qzeros(&self, elem_count: usize, dtype: GgmlDType) -> Result<QStorage> {
        match self {
            Device::Cpu => {
                let storage = dtype.cpu_zeros(elem_count);
                Ok(QStorage::Cpu(storage))
            }
            Device::Metal(metal) => {
                let storage = metal::QMetalStorage::zeros(metal, elem_count, dtype)?;
                Ok(QStorage::Metal(storage))
            }
            Device::Cuda(cuda) => {
                let storage = cuda::QCudaStorage::zeros(cuda, elem_count, dtype)?;
                Ok(QStorage::Cuda(storage))
            }
        }
    }
}

pub enum QStorage {
    Cpu(Box<dyn QuantizedType>),
    Metal(metal::QMetalStorage),
    Cuda(cuda::QCudaStorage),
}

impl QStorage {
    fn block_size(&self) -> usize {
        match self {
            QStorage::Cpu(storage) => storage.block_size(),
            QStorage::Metal(storage) => storage.dtype().block_size(),
            QStorage::Cuda(storage) => storage.dtype().block_size(),
        }
    }

    fn dtype(&self) -> GgmlDType {
        match self {
            QStorage::Cpu(storage) => storage.dtype(),
            QStorage::Metal(storage) => storage.dtype(),
            QStorage::Cuda(storage) => storage.dtype(),
        }
    }

    fn device(&self) -> Device {
        match self {
            QStorage::Cpu(_storage) => Device::Cpu,
            QStorage::Metal(storage) => Device::Metal(storage.device().clone()),
            QStorage::Cuda(storage) => Device::Cuda(storage.device().clone()),
        }
    }

    fn size_in_bytes(&self) -> usize {
        match self {
            QStorage::Cpu(storage) => storage.storage_size_in_bytes(),
            QStorage::Metal(storage) => storage.storage_size_in_bytes(),
            QStorage::Cuda(storage) => storage.storage_size_in_bytes(),
        }
    }

    fn quantize(&mut self, src: &Storage) -> Result<()> {
        match (self, src) {
            (QStorage::Cpu(storage), Storage::Cpu(src)) => {
                storage.from_float(src.as_slice::<f32>()?)?;
            }
            (QStorage::Metal(storage), Storage::Metal(src)) => storage.quantize(src)?,
            (QStorage::Cuda(storage), Storage::Cuda(src)) => storage.quantize(src)?,
            _ => crate::bail!("Invalid dequantize storage locations do not match"),
        }
        Ok(())
    }

    fn dequantize(&self, elem_count: usize) -> Result<Storage> {
        match self {
            QStorage::Cpu(storage) => Ok(Storage::Cpu(storage.dequantize(elem_count)?)),
            QStorage::Metal(storage) => Ok(Storage::Metal(storage.dequantize(elem_count)?)),
            QStorage::Cuda(storage) => Ok(Storage::Cuda(storage.dequantize(elem_count)?)),
        }
    }

    fn data(&self) -> Result<Cow<[u8]>> {
        match self {
            QStorage::Cpu(storage) => {
                let data_ptr = storage.as_ptr();
                let size_in_bytes = storage.storage_size_in_bytes();
                let data = unsafe { std::slice::from_raw_parts(data_ptr, size_in_bytes) };
                Ok(Cow::from(data))
            }
            QStorage::Metal(_) | QStorage::Cuda(_) => {
                crate::bail!("not implemented");
            }
        }
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum GgmlDType {
    F32,
    F16,
    Q4_0,
    Q4_1,
    Q5_0,
    Q5_1,
    Q8_0,
    Q8_1,
    Q2K,
    Q3K,
    Q4K,
    Q5K,
    Q6K,
    Q8K,
}

impl GgmlDType {
    pub(crate) fn from_u32(u: u32) -> Result<Self> {
        let dtype = match u {
            0 => Self::F32,
            1 => Self::F16,
            2 => Self::Q4_0,
            3 => Self::Q4_1,
            6 => Self::Q5_0,
            7 => Self::Q5_1,
            8 => Self::Q8_0,
            9 => Self::Q8_1,
            10 => Self::Q2K,
            11 => Self::Q3K,
            12 => Self::Q4K,
            13 => Self::Q5K,
            14 => Self::Q6K,
            15 => Self::Q8K,
            _ => crate::bail!("unknown dtype for tensor {u}"),
        };
        Ok(dtype)
    }

    pub(crate) fn to_u32(self) -> u32 {
        match self {
            Self::F32 => 0,
            Self::F16 => 1,
            Self::Q4_0 => 2,
            Self::Q4_1 => 3,
            Self::Q5_0 => 6,
            Self::Q5_1 => 7,
            Self::Q8_0 => 8,
            Self::Q8_1 => 9,
            Self::Q2K => 10,
            Self::Q3K => 11,
            Self::Q4K => 12,
            Self::Q5K => 13,
            Self::Q6K => 14,
            Self::Q8K => 15,
        }
    }

    /// The block dtype
    pub fn cpu_zeros(&self, elem_count: usize) -> Box<dyn QuantizedType> {
        match self {
            Self::F32 => Box::new(vec![f32::zeros(); elem_count]),
            Self::F16 => Box::new(vec![f16::zeros(); elem_count]),
            Self::Q4_0 => Box::new(vec![BlockQ4_0::zeros(); elem_count / BlockQ4_0::BLCK_SIZE]),
            Self::Q4_1 => Box::new(vec![BlockQ4_1::zeros(); elem_count / BlockQ4_1::BLCK_SIZE]),
            Self::Q5_0 => Box::new(vec![BlockQ5_0::zeros(); elem_count / BlockQ5_0::BLCK_SIZE]),
            Self::Q5_1 => Box::new(vec![BlockQ5_1::zeros(); elem_count / BlockQ5_1::BLCK_SIZE]),
            Self::Q8_0 => Box::new(vec![BlockQ8_0::zeros(); elem_count / BlockQ8_0::BLCK_SIZE]),
            Self::Q8_1 => Box::new(vec![BlockQ8_1::zeros(); elem_count / BlockQ8_1::BLCK_SIZE]),
            Self::Q2K => Box::new(vec![BlockQ2K::zeros(); elem_count / BlockQ2K::BLCK_SIZE]),
            Self::Q3K => Box::new(vec![BlockQ3K::zeros(); elem_count / BlockQ3K::BLCK_SIZE]),
            Self::Q4K => Box::new(vec![BlockQ4K::zeros(); elem_count / BlockQ4K::BLCK_SIZE]),
            Self::Q5K => Box::new(vec![BlockQ5K::zeros(); elem_count / BlockQ5K::BLCK_SIZE]),
            Self::Q6K => Box::new(vec![BlockQ6K::zeros(); elem_count / BlockQ6K::BLCK_SIZE]),
            Self::Q8K => Box::new(vec![BlockQ8K::zeros(); elem_count / BlockQ8K::BLCK_SIZE]),
        }
    }
    /// The type size for blocks in bytes.
    pub fn type_size(&self) -> usize {
        use k_quants::*;
        match self {
            Self::F32 => 4,
            Self::F16 => 2,
            Self::Q4_0 => std::mem::size_of::<BlockQ4_0>(),
            Self::Q4_1 => std::mem::size_of::<BlockQ4_1>(),
            Self::Q5_0 => std::mem::size_of::<BlockQ5_0>(),
            Self::Q5_1 => std::mem::size_of::<BlockQ5_1>(),
            // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L932
            Self::Q8_0 => std::mem::size_of::<BlockQ8_0>(),
            Self::Q8_1 => std::mem::size_of::<BlockQ8_1>(),
            Self::Q2K => std::mem::size_of::<BlockQ2K>(),
            Self::Q3K => std::mem::size_of::<BlockQ3K>(),
            Self::Q4K => std::mem::size_of::<BlockQ4K>(),
            Self::Q5K => std::mem::size_of::<BlockQ5K>(),
            Self::Q6K => std::mem::size_of::<BlockQ6K>(),
            Self::Q8K => std::mem::size_of::<BlockQ8K>(),
        }
    }

    /// The block size, i.e. the number of elements stored in each block.
    pub fn block_size(&self) -> usize {
        match self {
            Self::F32 => 1,
            Self::F16 => 1,
            Self::Q4_0 => k_quants::QK4_0,
            Self::Q4_1 => k_quants::QK4_1,
            Self::Q5_0 => k_quants::QK5_0,
            Self::Q5_1 => k_quants::QK5_1,
            Self::Q8_0 => k_quants::QK8_0,
            Self::Q8_1 => k_quants::QK8_1,
            Self::Q2K | Self::Q3K | Self::Q4K | Self::Q5K | Self::Q6K | Self::Q8K => k_quants::QK_K,
        }
    }
}

// A version of GgmlType without `vec_dot` so that it can be dyn boxed.
pub trait QuantizedType: Send + Sync {
    fn dtype(&self) -> GgmlDType;
    fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()>;
    fn dequantize(&self, elem_count: usize) -> Result<CpuStorage>;
    fn storage_size_in_bytes(&self) -> usize;
    fn as_ptr(&self) -> *const u8;
    fn block_size(&self) -> usize;
    #[allow(clippy::wrong_self_convention)]
    fn from_float(&mut self, xs: &[f32]) -> Result<()>;
    fn size(&self) -> usize;
}

impl<T: k_quants::GgmlType + Send + Sync> QuantizedType for Vec<T> {
    fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()> {
        k_quants::matmul(mkn, lhs, self.as_slice(), dst)
    }

    fn size(&self) -> usize {
        self.len() * core::mem::size_of::<T>()
    }

    fn from_float(&mut self, xs: &[f32]) -> Result<()> {
        T::from_float(xs, self)
    }

    fn dtype(&self) -> GgmlDType {
        T::DTYPE
    }

    fn block_size(&self) -> usize {
        T::BLCK_SIZE
    }

    fn dequantize(&self, elem_count: usize) -> Result<CpuStorage> {
        let mut ys = vec![0.0f32; elem_count];
        T::to_float(self.as_slice(), &mut ys)?;
        Ok(CpuStorage::F32(ys))
    }

    fn storage_size_in_bytes(&self) -> usize {
        self.len() * std::mem::size_of::<T>()
    }

    fn as_ptr(&self) -> *const u8 {
        self.as_ptr() as *const u8
    }
}

impl std::fmt::Debug for QTensor {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "QTensor[{:?}; {:?}]", self.shape, self.dtype())
    }
}

fn check_shape(shape: &Shape, block_size: usize) -> Result<()> {
    let dims = shape.dims();
    if dims.is_empty() {
        crate::bail!("scalar tensor cannot be quantized {shape:?}")
    }
    if dims[dims.len() - 1] % block_size != 0 {
        crate::bail!(
            "quantized tensor must have their last dim divisible by block size {shape:?} {}",
            block_size
        )
    }
    Ok(())
}

impl QTensor {
    pub fn new<S: Into<Shape>>(storage: QStorage, shape: S) -> Result<Self> {
        let shape = shape.into();
        check_shape(&shape, storage.block_size())?;
        Ok(Self { storage, shape })
    }

    pub fn quantize(src: &Tensor, dtype: GgmlDType) -> Result<Self> {
        let shape = src.shape();
        let block_size = dtype.block_size();
        check_shape(shape, block_size)?;
        let src = src.to_dtype(crate::DType::F32)?.flatten_all()?;
        let elem_count = shape.elem_count();
        if elem_count % block_size != 0 {
            crate::bail!(
                "tensor size ({shape:?}) is not divisible by block size {}",
                block_size
            )
        }
        let mut storage = src.device().qzeros(elem_count, dtype)?;
        storage.quantize(&src.storage())?;
        Ok(Self {
            storage,
            shape: shape.clone(),
        })
    }

    pub fn dtype(&self) -> GgmlDType {
        self.storage.dtype()
    }

    pub fn device(&self) -> Device {
        self.storage.device()
    }

    pub fn rank(&self) -> usize {
        self.shape.rank()
    }

    pub fn shape(&self) -> &Shape {
        &self.shape
    }

    pub fn dequantize(&self, device: &Device) -> Result<Tensor> {
        let storage = self.storage.dequantize(self.shape.elem_count())?;
        let none = crate::op::BackpropOp::none();
        crate::tensor::from_storage(storage, self.shape.clone(), none, false).to_device(device)
    }

    pub fn dequantize_f16(&self, device: &Device) -> Result<Tensor> {
        // In the CUDA case, we have a specialized kernel as this can be useful for volta
        // architectures. https://github.com/huggingface/candle/issues/2136
        match &self.storage {
            QStorage::Cuda(s) => {
                let s = s.dequantize_f16(self.shape.elem_count())?;
                let none = crate::op::BackpropOp::none();
                crate::tensor::from_storage(Storage::Cuda(s), self.shape.clone(), none, false)
                    .to_device(device)
            }
            _ => {
                let s = self.dequantize(device)?.to_dtype(crate::DType::F16)?;
                Ok(s)
            }
        }
    }

    pub fn storage_size_in_bytes(&self) -> usize {
        self.storage.size_in_bytes()
    }

    pub fn data(&self) -> Result<Cow<'_, [u8]>> {
        self.storage.data()
    }
}

#[derive(Clone, Debug)]
pub enum QMatMul {
    QTensor(std::sync::Arc<QTensor>),
    Tensor(Tensor),
    TensorF16(Tensor),
}

thread_local! {
    static DEQUANTIZE_ALL: bool = {
        match std::env::var("CANDLE_DEQUANTIZE_ALL") {
            Ok(s) => {
                !s.is_empty() && s != "0"
            },
            Err(_) => false,
        }
    }
}

thread_local! {
    static DEQUANTIZE_ALL_F16: bool = {
        match std::env::var("CANDLE_DEQUANTIZE_ALL_F16") {
            Ok(s) => {
                !s.is_empty() && s != "0"
            },
            Err(_) => false,
        }
    }
}

impl QMatMul {
    pub fn from_arc(qtensor: std::sync::Arc<QTensor>) -> Result<Self> {
        let dequantize = match qtensor.dtype() {
            GgmlDType::F32 | GgmlDType::F16 => true,
            _ => DEQUANTIZE_ALL.with(|b| *b),
        };
        let t = if dequantize {
            let tensor = qtensor.dequantize(&qtensor.device())?;
            Self::Tensor(tensor)
        } else if DEQUANTIZE_ALL_F16.with(|b| *b) {
            let tensor = qtensor.dequantize_f16(&qtensor.device())?;
            Self::TensorF16(tensor)
        } else {
            Self::QTensor(qtensor)
        };
        Ok(t)
    }

    pub fn from_qtensor(qtensor: QTensor) -> Result<Self> {
        Self::from_arc(std::sync::Arc::new(qtensor))
    }

    pub fn dequantize_f16(&self) -> Result<Tensor> {
        match self {
            Self::QTensor(t) => t.dequantize_f16(&t.device()),
            Self::Tensor(t) => t.to_dtype(DType::F16),
            Self::TensorF16(t) => Ok(t.clone()),
        }
    }

    pub fn forward_via_f16(&self, xs: &Tensor) -> Result<Tensor> {
        let w = self.dequantize_f16()?;
        let in_dtype = xs.dtype();
        let w = match *xs.dims() {
            [b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
            [bsize, _, _] => w.broadcast_left(bsize)?.t()?,
            _ => w.t()?,
        };
        xs.to_dtype(DType::F16)?.matmul(&w)?.to_dtype(in_dtype)
    }
}

impl crate::CustomOp1 for QTensor {
    fn name(&self) -> &'static str {
        "qmatmul"
    }

    fn cpu_fwd(
        &self,
        storage: &crate::CpuStorage,
        layout: &crate::Layout,
    ) -> Result<(crate::CpuStorage, Shape)> {
        if !layout.is_contiguous() {
            crate::bail!("input tensor is not contiguous {layout:?}")
        }
        let src_shape = layout.shape();
        // self is transposed so n is first then k.
        let (n, k) = self.shape.dims2()?;
        if src_shape.rank() < 2 {
            crate::bail!("input tensor has only one dimension {layout:?}")
        }
        let mut dst_shape = src_shape.dims().to_vec();
        let last_k = dst_shape.pop().unwrap();
        if last_k != k {
            crate::bail!("input tensor {layout:?} incompatible with {:?}", self.shape)
        }
        dst_shape.push(n);
        let dst_shape = Shape::from(dst_shape);
        #[allow(clippy::infallible_destructuring_match)]
        let self_storage = match &self.storage {
            QStorage::Cpu(storage) => storage,
            QStorage::Metal(_) | QStorage::Cuda(_) => crate::bail!("Invalid storage"),
        };
        let slice = storage.as_slice::<f32>()?;
        let slice = &slice[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
        let mut dst_storage = vec![0f32; dst_shape.elem_count()];
        self_storage.matmul_t((dst_shape.elem_count() / n, k, n), slice, &mut dst_storage)?;
        Ok((crate::CpuStorage::F32(dst_storage), dst_shape))
    }

    fn metal_fwd(
        &self,
        storage: &crate::MetalStorage,
        layout: &crate::Layout,
    ) -> Result<(crate::MetalStorage, Shape)> {
        let self_storage = match &self.storage {
            QStorage::Metal(metal) => metal,
            _ => unreachable!("Cannot call metal matmul on non metal QTensor"),
        };
        self_storage.fwd(&self.shape, storage, layout)
    }

    fn cuda_fwd(
        &self,
        storage: &crate::CudaStorage,
        layout: &crate::Layout,
    ) -> Result<(crate::CudaStorage, Shape)> {
        let self_storage = match &self.storage {
            QStorage::Cuda(cuda) => cuda,
            _ => unreachable!("Cannot call cuda matmul on non cuda QTensor"),
        };
        self_storage.fwd(&self.shape, storage, layout)
    }
}

impl crate::Module for QMatMul {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        match self {
            Self::QTensor(t) => xs.apply_op1_no_bwd(t.as_ref()),
            Self::Tensor(w) => {
                let w = match *xs.dims() {
                    [b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
                    [bsize, _, _] => w.broadcast_left(bsize)?.t()?,
                    _ => w.t()?,
                };
                xs.matmul(&w)
            }
            Self::TensorF16(w) => {
                let in_dtype = xs.dtype();
                let w = match *xs.dims() {
                    [b1, b2, _, _] => w.broadcast_left((b1, b2))?.t()?,
                    [bsize, _, _] => w.broadcast_left(bsize)?.t()?,
                    _ => w.t()?,
                };
                xs.to_dtype(DType::F16)?.matmul(&w)?.to_dtype(in_dtype)
            }
        }
    }
}