candle_core/
streaming.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use crate::{Result, Shape, Tensor};

pub trait Dim: crate::shape::Dim + Copy {}
impl<T: crate::shape::Dim + Copy> Dim for T {}

/// A stream tensor is used in streaming module. It can either contain an actual tensor or be
/// empty.
#[derive(Clone)]
pub struct StreamTensor(Option<Tensor>);

impl std::fmt::Debug for StreamTensor {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match &self.0 {
            Some(t) => write!(f, "{:?}", t.shape()),
            None => write!(f, "Empty"),
        }
    }
}

impl std::convert::From<Option<Tensor>> for StreamTensor {
    fn from(value: Option<Tensor>) -> Self {
        Self(value)
    }
}

impl std::convert::From<Tensor> for StreamTensor {
    fn from(value: Tensor) -> Self {
        Self(Some(value))
    }
}

impl std::convert::From<()> for StreamTensor {
    fn from(_value: ()) -> Self {
        Self(None)
    }
}

impl StreamTensor {
    pub fn empty() -> Self {
        Self(None)
    }

    pub fn from_tensor(tensor: Tensor) -> Self {
        Self(Some(tensor))
    }

    pub fn shape(&self) -> Option<&Shape> {
        self.0.as_ref().map(|t| t.shape())
    }

    pub fn cat2<D: Dim>(&self, rhs: &Self, dim: D) -> Result<Self> {
        let xs = match (&self.0, &rhs.0) {
            (Some(lhs), Some(rhs)) => {
                let xs = Tensor::cat(&[lhs, rhs], dim)?;
                Some(xs)
            }
            (Some(xs), None) | (None, Some(xs)) => Some(xs.clone()),
            (None, None) => None,
        };
        Ok(Self(xs))
    }

    pub fn seq_len<D: Dim>(&self, dim: D) -> Result<usize> {
        match &self.0 {
            None => Ok(0),
            Some(v) => v.dim(dim),
        }
    }

    pub fn reset(&mut self) {
        self.0 = None
    }

    pub fn narrow<D: Dim>(&self, dim: D, offset: usize, len: usize) -> Result<StreamTensor> {
        let t = match &self.0 {
            None => None,
            Some(t) => {
                let seq_len = t.dim(dim)?;
                if seq_len <= offset {
                    None
                } else {
                    let t = t.narrow(dim, offset, usize::min(len, seq_len - offset))?;
                    Some(t)
                }
            }
        };
        Ok(Self(t))
    }

    /// Splits the Streaming Tensor on the time axis `dim` with the first `lhs_len` elements
    /// returned in the first output and the remaining in the second output.
    pub fn split<D: Dim>(&self, dim: D, lhs_len: usize) -> Result<(Self, Self)> {
        match &self.0 {
            None => Ok((Self::empty(), Self::empty())),
            Some(t) => {
                let seq_len = t.dim(dim)?;
                let lhs_len = usize::min(seq_len, lhs_len);
                if lhs_len == 0 {
                    Ok((Self::empty(), t.clone().into()))
                } else {
                    let lhs = Self::from_tensor(t.narrow(dim, 0, lhs_len)?);
                    let rhs_len = seq_len - lhs_len;
                    let rhs = if rhs_len == 0 {
                        Self::empty()
                    } else {
                        Self::from_tensor(t.narrow(dim, lhs_len, rhs_len)?)
                    };
                    Ok((lhs, rhs))
                }
            }
        }
    }

    pub fn as_option(&self) -> Option<&Tensor> {
        self.0.as_ref()
    }

    pub fn apply<M: crate::Module>(&self, m: &M) -> Result<Self> {
        match &self.0 {
            None => Ok(Self::empty()),
            Some(t) => Ok(Self::from_tensor(t.apply(m)?)),
        }
    }
}

/// Streaming modules take as input a stream tensor and return a stream tensor. They may perform
/// some internal buffering so that enough data has been received for the module to be able to
/// perform some operations.
pub trait StreamingModule {
    // TODO: Should we also have a flush method?
    fn step(&mut self, xs: &StreamTensor) -> Result<StreamTensor>;
    fn reset_state(&mut self);
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum BinOp {
    Add,
    Mul,
    Sub,
    Div,
}

#[derive(Debug, Clone)]
pub struct StreamingBinOp {
    prev_lhs: StreamTensor,
    prev_rhs: StreamTensor,
    pub op: BinOp,
    pub dim: crate::D,
}

impl StreamingBinOp {
    pub fn new(op: BinOp, dim: crate::D) -> Self {
        Self {
            prev_lhs: StreamTensor::empty(),
            prev_rhs: StreamTensor::empty(),
            op,
            dim,
        }
    }

    pub fn reset_state(&mut self) {
        self.prev_lhs.reset();
        self.prev_rhs.reset();
    }

    pub fn forward(&self, lhs: &Tensor, rhs: &Tensor) -> Result<Tensor> {
        match self.op {
            BinOp::Add => Tensor::add(lhs, rhs),
            BinOp::Mul => Tensor::mul(lhs, rhs),
            BinOp::Sub => Tensor::sub(lhs, rhs),
            BinOp::Div => Tensor::div(lhs, rhs),
        }
    }

    pub fn step(&mut self, lhs: &StreamTensor, rhs: &StreamTensor) -> Result<StreamTensor> {
        let lhs = StreamTensor::cat2(&self.prev_lhs, lhs, self.dim)?;
        let rhs = StreamTensor::cat2(&self.prev_rhs, rhs, self.dim)?;
        let lhs_len = lhs.seq_len(self.dim)?;
        let rhs_len = rhs.seq_len(self.dim)?;
        let common_len = usize::min(lhs_len, rhs_len);
        let (lhs, prev_lhs) = lhs.split(self.dim, common_len)?;
        let (rhs, prev_rhs) = rhs.split(self.dim, common_len)?;
        let ys = match (lhs.0, rhs.0) {
            (Some(lhs), Some(rhs)) => {
                let ys = self.forward(&lhs, &rhs)?;
                StreamTensor::from_tensor(ys)
            }
            (None, None) => StreamTensor::empty(),
            (lhs, rhs) => crate::bail!("INTERNAL ERROR inconsistent lhs and rhs {lhs:?} {rhs:?}"),
        };
        self.prev_lhs = prev_lhs;
        self.prev_rhs = prev_rhs;
        Ok(ys)
    }
}

/// Simple wrapper that doesn't do any buffering.
pub struct Map<T: crate::Module>(T);

impl<T: crate::Module> StreamingModule for Map<T> {
    fn reset_state(&mut self) {}

    fn step(&mut self, xs: &StreamTensor) -> Result<StreamTensor> {
        xs.apply(&self.0)
    }
}