candle_core/
shape.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
//! The shape of a tensor is a tuple with the size of each of its dimensions.
#![allow(clippy::redundant_closure_call)]
use crate::{Error, Result};

#[derive(Clone, PartialEq, Eq)]
pub struct Shape(Vec<usize>);

pub const SCALAR: Shape = Shape(vec![]);

impl std::fmt::Debug for Shape {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{:?}", &self.dims())
    }
}

impl<const C: usize> From<&[usize; C]> for Shape {
    fn from(dims: &[usize; C]) -> Self {
        Self(dims.to_vec())
    }
}

impl From<&[usize]> for Shape {
    fn from(dims: &[usize]) -> Self {
        Self(dims.to_vec())
    }
}

impl From<&Shape> for Shape {
    fn from(shape: &Shape) -> Self {
        Self(shape.0.to_vec())
    }
}

impl From<()> for Shape {
    fn from(_: ()) -> Self {
        Self(vec![])
    }
}

impl From<usize> for Shape {
    fn from(d1: usize) -> Self {
        Self(vec![d1])
    }
}

impl From<(usize,)> for Shape {
    fn from(d1: (usize,)) -> Self {
        Self(vec![d1.0])
    }
}

impl From<(usize, usize)> for Shape {
    fn from(d12: (usize, usize)) -> Self {
        Self(vec![d12.0, d12.1])
    }
}

impl From<(usize, usize, usize)> for Shape {
    fn from(d123: (usize, usize, usize)) -> Self {
        Self(vec![d123.0, d123.1, d123.2])
    }
}

impl From<(usize, usize, usize, usize)> for Shape {
    fn from(d1234: (usize, usize, usize, usize)) -> Self {
        Self(vec![d1234.0, d1234.1, d1234.2, d1234.3])
    }
}

impl From<(usize, usize, usize, usize, usize)> for Shape {
    fn from(d12345: (usize, usize, usize, usize, usize)) -> Self {
        Self(vec![d12345.0, d12345.1, d12345.2, d12345.3, d12345.4])
    }
}

impl From<(usize, usize, usize, usize, usize, usize)> for Shape {
    fn from(d123456: (usize, usize, usize, usize, usize, usize)) -> Self {
        Self(vec![
            d123456.0, d123456.1, d123456.2, d123456.3, d123456.4, d123456.5,
        ])
    }
}

impl From<Vec<usize>> for Shape {
    fn from(dims: Vec<usize>) -> Self {
        Self(dims)
    }
}

macro_rules! extract_dims {
    ($fn_name:ident, $cnt:tt, $dims:expr, $out_type:ty) => {
        pub fn $fn_name(dims: &[usize]) -> Result<$out_type> {
            if dims.len() != $cnt {
                Err(Error::UnexpectedNumberOfDims {
                    expected: $cnt,
                    got: dims.len(),
                    shape: Shape::from(dims),
                }
                .bt())
            } else {
                Ok($dims(dims))
            }
        }

        impl Shape {
            pub fn $fn_name(&self) -> Result<$out_type> {
                $fn_name(self.0.as_slice())
            }
        }

        impl crate::Tensor {
            pub fn $fn_name(&self) -> Result<$out_type> {
                self.shape().$fn_name()
            }
        }

        impl std::convert::TryInto<$out_type> for Shape {
            type Error = crate::Error;
            fn try_into(self) -> std::result::Result<$out_type, Self::Error> {
                self.$fn_name()
            }
        }
    };
}

impl Shape {
    pub fn from_dims(dims: &[usize]) -> Self {
        Self(dims.to_vec())
    }

    /// The rank is the number of dimensions, 0 for a scalar value, 1 for a vector, etc.
    pub fn rank(&self) -> usize {
        self.0.len()
    }

    pub fn into_dims(self) -> Vec<usize> {
        self.0
    }

    /// The dimensions as a slice of `usize`.
    pub fn dims(&self) -> &[usize] {
        &self.0
    }

    /// The dimension size for a specified dimension index.
    pub fn dim<D: Dim>(&self, dim: D) -> Result<usize> {
        let dim = dim.to_index(self, "dim")?;
        Ok(self.dims()[dim])
    }

    /// The total number of elements, this is the product of all dimension sizes.
    pub fn elem_count(&self) -> usize {
        self.0.iter().product()
    }

    /// The strides given in number of elements for a contiguous n-dimensional
    /// arrays using this shape.
    pub(crate) fn stride_contiguous(&self) -> Vec<usize> {
        let mut stride: Vec<_> = self
            .0
            .iter()
            .rev()
            .scan(1, |prod, u| {
                let prod_pre_mult = *prod;
                *prod *= u;
                Some(prod_pre_mult)
            })
            .collect();
        stride.reverse();
        stride
    }

    /// Returns true if the strides are C contiguous (aka row major).
    pub fn is_contiguous(&self, stride: &[usize]) -> bool {
        if self.0.len() != stride.len() {
            return false;
        }
        let mut acc = 1;
        for (&stride, &dim) in stride.iter().zip(self.0.iter()).rev() {
            if dim > 1 && stride != acc {
                return false;
            }
            acc *= dim;
        }
        true
    }

    /// Returns true if the strides are Fortran contiguous (aka column major).
    pub fn is_fortran_contiguous(&self, stride: &[usize]) -> bool {
        if self.0.len() != stride.len() {
            return false;
        }
        let mut acc = 1;
        for (&stride, &dim) in stride.iter().zip(self.0.iter()) {
            if dim > 1 && stride != acc {
                return false;
            }
            acc *= dim;
        }
        true
    }

    /// Modifies the shape by adding a list of additional dimensions at the end of the existing
    /// dimensions.
    pub fn extend(mut self, additional_dims: &[usize]) -> Self {
        self.0.extend(additional_dims);
        self
    }

    /// Check whether the two shapes are compatible for broadcast, and if it is the case return the
    /// broadcasted shape. This is to be used for binary pointwise ops.
    pub fn broadcast_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<Shape> {
        let lhs = self;
        let lhs_dims = lhs.dims();
        let rhs_dims = rhs.dims();
        let lhs_ndims = lhs_dims.len();
        let rhs_ndims = rhs_dims.len();
        let bcast_ndims = usize::max(lhs_ndims, rhs_ndims);
        let mut bcast_dims = vec![0; bcast_ndims];
        for (idx, bcast_value) in bcast_dims.iter_mut().enumerate() {
            let rev_idx = bcast_ndims - idx;
            let l_value = if lhs_ndims < rev_idx {
                1
            } else {
                lhs_dims[lhs_ndims - rev_idx]
            };
            let r_value = if rhs_ndims < rev_idx {
                1
            } else {
                rhs_dims[rhs_ndims - rev_idx]
            };
            *bcast_value = if l_value == r_value {
                l_value
            } else if l_value == 1 {
                r_value
            } else if r_value == 1 {
                l_value
            } else {
                Err(Error::ShapeMismatchBinaryOp {
                    lhs: lhs.clone(),
                    rhs: rhs.clone(),
                    op,
                }
                .bt())?
            }
        }
        Ok(Shape::from(bcast_dims))
    }

    pub(crate) fn broadcast_shape_matmul(&self, rhs: &Self) -> Result<(Shape, Shape)> {
        let lhs = self;
        let lhs_dims = lhs.dims();
        let rhs_dims = rhs.dims();
        if lhs_dims.len() < 2 || rhs_dims.len() < 2 {
            crate::bail!("only 2d matrixes are supported {lhs:?} {rhs:?}")
        }
        let (m, lhs_k) = (lhs_dims[lhs_dims.len() - 2], lhs_dims[lhs_dims.len() - 1]);
        let (rhs_k, n) = (rhs_dims[rhs_dims.len() - 2], rhs_dims[rhs_dims.len() - 1]);
        if lhs_k != rhs_k {
            crate::bail!("different inner dimensions in broadcast matmul {lhs:?} {rhs:?}")
        }

        let lhs_b = Self::from(&lhs_dims[..lhs_dims.len() - 2]);
        let rhs_b = Self::from(&rhs_dims[..rhs_dims.len() - 2]);
        let bcast = lhs_b.broadcast_shape_binary_op(&rhs_b, "broadcast_matmul")?;
        let bcast_dims = bcast.dims();

        let bcast_lhs = [bcast_dims, &[m, lhs_k]].concat();
        let bcast_rhs = [bcast_dims, &[rhs_k, n]].concat();
        Ok((Shape::from(bcast_lhs), Shape::from(bcast_rhs)))
    }
}

pub trait Dim {
    fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize>;
    fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize>;
}

impl Dim for usize {
    fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize> {
        let dim = *self;
        if dim >= shape.dims().len() {
            Err(Error::DimOutOfRange {
                shape: shape.clone(),
                dim: dim as i32,
                op,
            }
            .bt())?
        } else {
            Ok(dim)
        }
    }

    fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize> {
        let dim = *self;
        if dim > shape.dims().len() {
            Err(Error::DimOutOfRange {
                shape: shape.clone(),
                dim: dim as i32,
                op,
            }
            .bt())?
        } else {
            Ok(dim)
        }
    }
}

#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum D {
    Minus1,
    Minus2,
    Minus(usize),
}

impl D {
    fn out_of_range(&self, shape: &Shape, op: &'static str) -> Error {
        let dim = match self {
            Self::Minus1 => -1,
            Self::Minus2 => -2,
            Self::Minus(u) => -(*u as i32),
        };
        Error::DimOutOfRange {
            shape: shape.clone(),
            dim,
            op,
        }
        .bt()
    }
}

impl Dim for D {
    fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize> {
        let rank = shape.rank();
        match self {
            Self::Minus1 if rank >= 1 => Ok(rank - 1),
            Self::Minus2 if rank >= 2 => Ok(rank - 2),
            Self::Minus(u) if *u > 0 && rank >= *u => Ok(rank - *u),
            _ => Err(self.out_of_range(shape, op)),
        }
    }

    fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize> {
        let rank = shape.rank();
        match self {
            Self::Minus1 => Ok(rank),
            Self::Minus2 if rank >= 1 => Ok(rank - 1),
            Self::Minus(u) if *u > 0 && rank + 1 >= *u => Ok(rank + 1 - *u),
            _ => Err(self.out_of_range(shape, op)),
        }
    }
}

pub trait Dims: Sized {
    fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>>;

    fn to_indexes(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
        let dims = self.to_indexes_internal(shape, op)?;
        for (i, &dim) in dims.iter().enumerate() {
            if dims[..i].contains(&dim) {
                Err(Error::DuplicateDimIndex {
                    shape: shape.clone(),
                    dims: dims.clone(),
                    op,
                }
                .bt())?
            }
            if dim >= shape.rank() {
                Err(Error::DimOutOfRange {
                    shape: shape.clone(),
                    dim: dim as i32,
                    op,
                }
                .bt())?
            }
        }
        Ok(dims)
    }
}

impl Dims for Vec<usize> {
    fn to_indexes_internal(self, _: &Shape, _: &'static str) -> Result<Vec<usize>> {
        Ok(self)
    }
}

impl<const N: usize> Dims for [usize; N] {
    fn to_indexes_internal(self, _: &Shape, _: &'static str) -> Result<Vec<usize>> {
        Ok(self.to_vec())
    }
}

impl Dims for &[usize] {
    fn to_indexes_internal(self, _: &Shape, _: &'static str) -> Result<Vec<usize>> {
        Ok(self.to_vec())
    }
}

impl Dims for () {
    fn to_indexes_internal(self, _: &Shape, _: &'static str) -> Result<Vec<usize>> {
        Ok(vec![])
    }
}

impl<D: Dim + Sized> Dims for D {
    fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
        let dim = self.to_index(shape, op)?;
        Ok(vec![dim])
    }
}

impl<D: Dim> Dims for (D,) {
    fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
        let dim = self.0.to_index(shape, op)?;
        Ok(vec![dim])
    }
}

impl<D1: Dim, D2: Dim> Dims for (D1, D2) {
    fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
        let d0 = self.0.to_index(shape, op)?;
        let d1 = self.1.to_index(shape, op)?;
        Ok(vec![d0, d1])
    }
}

impl<D1: Dim, D2: Dim, D3: Dim> Dims for (D1, D2, D3) {
    fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
        let d0 = self.0.to_index(shape, op)?;
        let d1 = self.1.to_index(shape, op)?;
        let d2 = self.2.to_index(shape, op)?;
        Ok(vec![d0, d1, d2])
    }
}

impl<D1: Dim, D2: Dim, D3: Dim, D4: Dim> Dims for (D1, D2, D3, D4) {
    fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
        let d0 = self.0.to_index(shape, op)?;
        let d1 = self.1.to_index(shape, op)?;
        let d2 = self.2.to_index(shape, op)?;
        let d3 = self.3.to_index(shape, op)?;
        Ok(vec![d0, d1, d2, d3])
    }
}

impl<D1: Dim, D2: Dim, D3: Dim, D4: Dim, D5: Dim> Dims for (D1, D2, D3, D4, D5) {
    fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
        let d0 = self.0.to_index(shape, op)?;
        let d1 = self.1.to_index(shape, op)?;
        let d2 = self.2.to_index(shape, op)?;
        let d3 = self.3.to_index(shape, op)?;
        let d4 = self.4.to_index(shape, op)?;
        Ok(vec![d0, d1, d2, d3, d4])
    }
}

impl<D1: Dim, D2: Dim, D3: Dim, D4: Dim, D5: Dim, D6: Dim> Dims for (D1, D2, D3, D4, D5, D6) {
    fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
        let d0 = self.0.to_index(shape, op)?;
        let d1 = self.1.to_index(shape, op)?;
        let d2 = self.2.to_index(shape, op)?;
        let d3 = self.3.to_index(shape, op)?;
        let d4 = self.4.to_index(shape, op)?;
        let d5 = self.5.to_index(shape, op)?;
        Ok(vec![d0, d1, d2, d3, d4, d5])
    }
}

extract_dims!(dims0, 0, |_: &[usize]| (), ());
extract_dims!(dims1, 1, |d: &[usize]| d[0], usize);
extract_dims!(dims2, 2, |d: &[usize]| (d[0], d[1]), (usize, usize));
extract_dims!(
    dims3,
    3,
    |d: &[usize]| (d[0], d[1], d[2]),
    (usize, usize, usize)
);
extract_dims!(
    dims4,
    4,
    |d: &[usize]| (d[0], d[1], d[2], d[3]),
    (usize, usize, usize, usize)
);
extract_dims!(
    dims5,
    5,
    |d: &[usize]| (d[0], d[1], d[2], d[3], d[4]),
    (usize, usize, usize, usize, usize)
);

pub trait ShapeWithOneHole {
    fn into_shape(self, el_count: usize) -> Result<Shape>;
}

impl<S: Into<Shape>> ShapeWithOneHole for S {
    fn into_shape(self, _el_count: usize) -> Result<Shape> {
        Ok(self.into())
    }
}

impl ShapeWithOneHole for ((),) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        Ok(el_count.into())
    }
}

fn hole_size(el_count: usize, prod_d: usize, s: &dyn std::fmt::Debug) -> Result<usize> {
    if prod_d == 0 {
        crate::bail!("cannot reshape tensor of {el_count} elements to {s:?}")
    }
    if el_count % prod_d != 0 {
        crate::bail!("cannot reshape tensor with {el_count} elements to {s:?}")
    }
    Ok(el_count / prod_d)
}

impl ShapeWithOneHole for ((), usize) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let ((), d1) = self;
        Ok((hole_size(el_count, d1, &self)?, d1).into())
    }
}

impl ShapeWithOneHole for (usize, ()) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let (d1, ()) = self;
        Ok((d1, hole_size(el_count, d1, &self)?).into())
    }
}

impl ShapeWithOneHole for ((), usize, usize) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let ((), d1, d2) = self;
        Ok((hole_size(el_count, d1 * d2, &self)?, d1, d2).into())
    }
}

impl ShapeWithOneHole for (usize, (), usize) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let (d1, (), d2) = self;
        Ok((d1, hole_size(el_count, d1 * d2, &self)?, d2).into())
    }
}

impl ShapeWithOneHole for (usize, usize, ()) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let (d1, d2, ()) = self;
        Ok((d1, d2, hole_size(el_count, d1 * d2, &self)?).into())
    }
}

impl ShapeWithOneHole for ((), usize, usize, usize) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let ((), d1, d2, d3) = self;
        let d = hole_size(el_count, d1 * d2 * d3, &self)?;
        Ok((d, d1, d2, d3).into())
    }
}

impl ShapeWithOneHole for (usize, (), usize, usize) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let (d1, (), d2, d3) = self;
        let d = hole_size(el_count, d1 * d2 * d3, &self)?;
        Ok((d1, d, d2, d3).into())
    }
}

impl ShapeWithOneHole for (usize, usize, (), usize) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let (d1, d2, (), d3) = self;
        let d = hole_size(el_count, d1 * d2 * d3, &self)?;
        Ok((d1, d2, d, d3).into())
    }
}

impl ShapeWithOneHole for (usize, usize, usize, ()) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let (d1, d2, d3, ()) = self;
        let d = hole_size(el_count, d1 * d2 * d3, &self)?;
        Ok((d1, d2, d3, d).into())
    }
}

impl ShapeWithOneHole for ((), usize, usize, usize, usize) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let ((), d1, d2, d3, d4) = self;
        let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
        Ok((d, d1, d2, d3, d4).into())
    }
}

impl ShapeWithOneHole for (usize, (), usize, usize, usize) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let (d1, (), d2, d3, d4) = self;
        let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
        Ok((d1, d, d2, d3, d4).into())
    }
}

impl ShapeWithOneHole for (usize, usize, (), usize, usize) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let (d1, d2, (), d3, d4) = self;
        let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
        Ok((d1, d2, d, d3, d4).into())
    }
}

impl ShapeWithOneHole for (usize, usize, usize, (), usize) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let (d1, d2, d3, (), d4) = self;
        let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
        Ok((d1, d2, d3, d, d4).into())
    }
}

impl ShapeWithOneHole for (usize, usize, usize, usize, ()) {
    fn into_shape(self, el_count: usize) -> Result<Shape> {
        let (d1, d2, d3, d4, ()) = self;
        let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
        Ok((d1, d2, d3, d4, d).into())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn stride() {
        let shape = Shape::from(());
        assert_eq!(shape.stride_contiguous(), Vec::<usize>::new());
        let shape = Shape::from(42);
        assert_eq!(shape.stride_contiguous(), [1]);
        let shape = Shape::from((42, 1337));
        assert_eq!(shape.stride_contiguous(), [1337, 1]);
        let shape = Shape::from((299, 792, 458));
        assert_eq!(shape.stride_contiguous(), [458 * 792, 458, 1]);
    }
}