use crate::{op::BackpropOp, op::Op, Error, Result, Tensor};
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParamsConv1D {
pub(crate) b_size: usize,
pub(crate) l_in: usize,
pub(crate) c_out: usize,
pub(crate) c_in: usize,
pub(crate) k_size: usize,
pub(crate) padding: usize,
pub(crate) stride: usize,
pub(crate) dilation: usize,
}
impl ParamsConv1D {
pub(crate) fn l_out(&self) -> usize {
(self.l_in + 2 * self.padding - self.dilation * (self.k_size - 1) - 1) / self.stride + 1
}
pub(crate) fn out_dims(&self) -> Vec<usize> {
let l_out = self.l_out();
vec![self.b_size, self.c_out, l_out]
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParamsConvTranspose1D {
pub(crate) b_size: usize,
pub(crate) l_in: usize,
pub(crate) c_out: usize,
pub(crate) c_in: usize,
pub(crate) k_size: usize,
pub(crate) padding: usize,
pub(crate) output_padding: usize,
pub(crate) stride: usize,
pub(crate) dilation: usize,
}
impl ParamsConvTranspose1D {
pub(crate) fn l_out(&self) -> usize {
(self.l_in - 1) * self.stride - 2 * self.padding
+ self.dilation * (self.k_size - 1)
+ self.output_padding
+ 1
}
pub(crate) fn out_dims(&self) -> Vec<usize> {
let l_out = self.l_out();
vec![self.b_size, self.c_out, l_out]
}
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum CudnnFwdAlgo {
ImplicitGemm,
ImplicitPrecompGemm,
Gemm,
Direct,
Fft,
FftTiling,
Winograd,
WinogradNonFused,
Count,
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParamsConv2D {
pub(crate) b_size: usize,
pub(crate) i_h: usize,
pub(crate) i_w: usize,
pub(crate) k_h: usize,
pub(crate) k_w: usize,
pub(crate) c_out: usize,
pub(crate) c_in: usize,
pub(crate) padding: usize,
pub(crate) stride: usize,
pub(crate) dilation: usize,
pub cudnn_fwd_algo: Option<CudnnFwdAlgo>,
}
impl ParamsConv2D {
pub(crate) fn out_h(&self) -> usize {
(self.i_h + 2 * self.padding - self.dilation * (self.k_h - 1) - 1) / self.stride + 1
}
pub(crate) fn out_w(&self) -> usize {
(self.i_w + 2 * self.padding - self.dilation * (self.k_w - 1) - 1) / self.stride + 1
}
pub(crate) fn out_dims(&self) -> Vec<usize> {
vec![self.b_size, self.c_out, self.out_h(), self.out_w()]
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParamsConvTranspose2D {
pub(crate) b_size: usize,
pub(crate) i_h: usize,
pub(crate) i_w: usize,
pub(crate) k_h: usize,
pub(crate) k_w: usize,
pub(crate) c_out: usize,
pub(crate) c_in: usize,
pub(crate) padding: usize,
pub(crate) output_padding: usize,
pub(crate) stride: usize,
pub(crate) dilation: usize,
}
impl ParamsConvTranspose2D {
pub(crate) fn out_h(&self) -> usize {
(self.i_h - 1) * self.stride + self.dilation * (self.k_h - 1) + self.output_padding + 1
- 2 * self.padding
}
pub(crate) fn out_w(&self) -> usize {
(self.i_w - 1) * self.stride + self.dilation * (self.k_w - 1) + self.output_padding + 1
- 2 * self.padding
}
pub(crate) fn out_dims(&self) -> Vec<usize> {
vec![self.b_size, self.c_out, self.out_h(), self.out_w()]
}
}
impl Tensor {
fn conv1d_single_group(&self, kernel: &Self, params: &ParamsConv1D) -> Result<Self> {
let storage =
self.storage()
.conv1d(self.layout(), &kernel.storage(), kernel.layout(), params)?;
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::Conv1D {
arg,
kernel,
padding: params.padding,
stride: params.stride,
dilation: params.dilation,
});
let out_dims = params.out_dims();
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
}
pub fn conv1d(
&self,
kernel: &Self,
padding: usize,
stride: usize,
dilation: usize,
groups: usize,
) -> Result<Self> {
let (c_out, c_in_k, k_size) = kernel.dims3()?;
let (b_size, c_in, l_in) = self.dims3()?;
if c_in != c_in_k * groups {
Err(Error::Conv1dInvalidArgs {
inp_shape: self.shape().clone(),
k_shape: kernel.shape().clone(),
padding,
stride,
msg: "the number of in-channels on the input doesn't match the kernel size",
}
.bt())?
}
let params = ParamsConv1D {
b_size,
l_in,
c_out: c_out / groups,
c_in: c_in / groups,
k_size,
padding,
stride,
dilation,
};
if groups == 1 {
self.conv1d_single_group(kernel, ¶ms)
} else {
let blocks = self.chunk(groups, 1)?;
let kernel = kernel.chunk(groups, 0)?;
let blocks = blocks
.iter()
.zip(&kernel)
.map(|(block, kernel)| block.conv1d_single_group(kernel, ¶ms))
.collect::<Result<Vec<_>>>()?;
Tensor::cat(&blocks, 1)
}
}
fn conv_transpose1d_single_group(
&self,
kernel: &Self,
params: &ParamsConvTranspose1D,
) -> Result<Self> {
let storage = self.storage().conv_transpose1d(
self.layout(),
&kernel.storage(),
kernel.layout(),
params,
)?;
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::ConvTranspose1D {
arg,
kernel,
padding: params.padding,
output_padding: params.output_padding,
stride: params.stride,
dilation: params.dilation,
});
let out_dims = params.out_dims();
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
}
pub fn conv_transpose1d(
&self,
kernel: &Self,
padding: usize,
output_padding: usize,
stride: usize,
dilation: usize,
groups: usize,
) -> Result<Self> {
let (c_in_k, c_out, k_size) = kernel.dims3()?;
let (b_size, c_in, l_in) = self.dims3()?;
if c_in != c_in_k {
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
}
if c_in % groups != 0 {
crate::bail!("in_channel {c_in} is not divisible by the number of groups")
}
let params = ParamsConvTranspose1D {
b_size,
l_in,
k_size,
c_out,
c_in: c_in / groups,
padding,
output_padding,
stride,
dilation,
};
if groups == 1 {
self.conv_transpose1d_single_group(kernel, ¶ms)
} else {
let blocks = self.chunk(groups, 1)?;
let kernel = kernel.chunk(groups, 0)?;
let blocks = blocks
.iter()
.zip(&kernel)
.map(|(block, kernel)| block.conv_transpose1d_single_group(kernel, ¶ms))
.collect::<Result<Vec<_>>>()?;
Tensor::cat(&blocks, 1)
}
}
fn conv2d_single_group(&self, kernel: &Self, params: &ParamsConv2D) -> Result<Self> {
let storage =
self.storage()
.conv2d(self.layout(), &kernel.storage(), kernel.layout(), params)?;
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::Conv2D {
arg,
kernel,
padding: params.padding,
stride: params.stride,
dilation: params.dilation,
});
let out_dims = params.out_dims();
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
}
pub fn conv2d(
&self,
kernel: &Self,
padding: usize,
stride: usize,
dilation: usize,
groups: usize,
) -> Result<Self> {
let (b_size, c_in, i_h, i_w) = self.dims4()?;
let (c_out, c_in_k, k_h, k_w) = kernel.dims4()?;
if c_in != c_in_k * groups {
crate::bail!(
"in_channel mismatch between input ({c_in}, groups {groups}) and kernel ({c_in_k})"
)
}
let params = ParamsConv2D {
b_size,
i_h,
i_w,
k_h,
k_w,
c_out: c_out / groups,
c_in: c_in / groups,
padding,
stride,
dilation,
cudnn_fwd_algo: None,
};
if groups == 1 {
self.conv2d_single_group(kernel, ¶ms)
} else {
let blocks = self.chunk(groups, 1)?;
let kernel = kernel.chunk(groups, 0)?;
let blocks = blocks
.iter()
.zip(&kernel)
.map(|(block, kernel)| block.conv2d_single_group(kernel, ¶ms))
.collect::<Result<Vec<_>>>()?;
Tensor::cat(&blocks, 1)
}
}
pub fn conv_transpose2d(
&self,
kernel: &Self,
padding: usize,
output_padding: usize,
stride: usize,
dilation: usize,
) -> Result<Self> {
let (b_size, c_in, i_h, i_w) = self.dims4()?;
let (c_in_k, c_out, k_h, k_w) = kernel.dims4()?;
if c_in != c_in_k {
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
}
let params = ParamsConvTranspose2D {
b_size,
i_h,
i_w,
k_h,
k_w,
c_out,
c_in,
padding,
output_padding,
stride,
dilation,
};
let storage = self.storage().conv_transpose2d(
self.layout(),
&kernel.storage(),
kernel.layout(),
¶ms,
)?;
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::ConvTranspose2D {
arg,
kernel,
padding: params.padding,
output_padding: params.output_padding,
stride: params.stride,
dilation: params.dilation,
});
let out_dims = params.out_dims();
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
}
}