candle_core/quantized/
gguf_file.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
//! Support for the GGUF file format.
//!
//! Spec: https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md

use super::{GgmlDType, QTensor};
use crate::{Device, Result};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use std::collections::HashMap;

pub const DEFAULT_ALIGNMENT: u64 = 32;

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Magic {
    Gguf,
}

impl TryFrom<u32> for Magic {
    type Error = crate::Error;
    fn try_from(value: u32) -> Result<Self> {
        let magic = match value {
            0x46554747 | 0x47475546 => Self::Gguf,
            _ => crate::bail!("unknown magic 0x{value:08x}"),
        };
        Ok(magic)
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum VersionedMagic {
    GgufV1,
    GgufV2,
    GgufV3,
}

impl VersionedMagic {
    fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
        let magic = reader.read_u32::<LittleEndian>()?;
        let magic = Magic::try_from(magic)?;
        let version = reader.read_u32::<LittleEndian>()?;
        let versioned_magic = match (magic, version) {
            (Magic::Gguf, 1) => Self::GgufV1,
            (Magic::Gguf, 2) => Self::GgufV2,
            (Magic::Gguf, 3) => Self::GgufV3,
            _ => crate::bail!("gguf: unsupported magic/version {magic:?}/{version}"),
        };
        Ok(versioned_magic)
    }
}

#[derive(Debug)]
pub struct TensorInfo {
    pub ggml_dtype: GgmlDType,
    pub shape: crate::Shape,
    pub offset: u64,
}

impl TensorInfo {
    pub fn read<R: std::io::Seek + std::io::Read>(
        &self,
        reader: &mut R,
        tensor_data_offset: u64,
        device: &Device,
    ) -> Result<QTensor> {
        let tensor_elems = self.shape.elem_count();
        let block_size = self.ggml_dtype.block_size();
        if tensor_elems % block_size != 0 {
            crate::bail!(
            "the number of elements {tensor_elems} is not divisible by the block size {block_size}"
        )
        }
        let size_in_bytes = tensor_elems / block_size * self.ggml_dtype.type_size();
        let mut raw_data = vec![0u8; size_in_bytes];
        reader.seek(std::io::SeekFrom::Start(tensor_data_offset + self.offset))?;
        reader.read_exact(&mut raw_data)?;
        super::ggml_file::qtensor_from_ggml(
            self.ggml_dtype,
            &raw_data,
            self.shape.dims().to_vec(),
            device,
        )
    }
}

#[derive(Debug)]
pub struct Content {
    pub magic: VersionedMagic,
    pub metadata: HashMap<String, Value>,
    pub tensor_infos: HashMap<String, TensorInfo>,
    pub tensor_data_offset: u64,
}

fn read_string<R: std::io::Read>(reader: &mut R, magic: &VersionedMagic) -> Result<String> {
    let len = match magic {
        VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
        VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
            reader.read_u64::<LittleEndian>()? as usize
        }
    };
    let mut v = vec![0u8; len];
    reader.read_exact(&mut v)?;
    // GGUF strings are supposed to be non-null terminated but in practice this happens.
    while let Some(0) = v.last() {
        v.pop();
    }
    // GGUF strings are utf8 encoded but there are cases that don't seem to be valid.
    Ok(String::from_utf8_lossy(&v).into_owned())
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ValueType {
    // The value is a 8-bit unsigned integer.
    U8,
    // The value is a 8-bit signed integer.
    I8,
    // The value is a 16-bit unsigned little-endian integer.
    U16,
    // The value is a 16-bit signed little-endian integer.
    I16,
    // The value is a 32-bit unsigned little-endian integer.
    U32,
    // The value is a 32-bit signed little-endian integer.
    I32,
    // The value is a 64-bit unsigned little-endian integer.
    U64,
    // The value is a 64-bit signed little-endian integer.
    I64,
    // The value is a 32-bit IEEE754 floating point number.
    F32,
    // The value is a 64-bit IEEE754 floating point number.
    F64,
    // The value is a boolean.
    // 1-byte value where 0 is false and 1 is true.
    // Anything else is invalid, and should be treated as either the model being invalid or the reader being buggy.
    Bool,
    // The value is a UTF-8 non-null-terminated string, with length prepended.
    String,
    // The value is an array of other values, with the length and type prepended.
    // Arrays can be nested, and the length of the array is the number of elements in the array, not the number of bytes.
    Array,
}

#[derive(Debug, Clone)]
pub enum Value {
    U8(u8),
    I8(i8),
    U16(u16),
    I16(i16),
    U32(u32),
    I32(i32),
    U64(u64),
    I64(i64),
    F32(f32),
    F64(f64),
    Bool(bool),
    String(String),
    Array(Vec<Value>),
}

impl Value {
    pub fn value_type(&self) -> ValueType {
        match self {
            Self::U8(_) => ValueType::U8,
            Self::I8(_) => ValueType::I8,
            Self::U16(_) => ValueType::U16,
            Self::I16(_) => ValueType::I16,
            Self::U32(_) => ValueType::U32,
            Self::I32(_) => ValueType::I32,
            Self::U64(_) => ValueType::U64,
            Self::I64(_) => ValueType::I64,
            Self::F32(_) => ValueType::F32,
            Self::F64(_) => ValueType::F64,
            Self::Bool(_) => ValueType::Bool,
            Self::String(_) => ValueType::String,
            Self::Array(_) => ValueType::Array,
        }
    }

    pub fn to_u8(&self) -> Result<u8> {
        match self {
            Self::U8(v) => Ok(*v),
            v => crate::bail!("not a u8 {v:?}"),
        }
    }

    pub fn to_i8(&self) -> Result<i8> {
        match self {
            Self::I8(v) => Ok(*v),
            v => crate::bail!("not a i8 {v:?}"),
        }
    }

    pub fn to_u16(&self) -> Result<u16> {
        match self {
            Self::U16(v) => Ok(*v),
            v => crate::bail!("not a u16 {v:?}"),
        }
    }

    pub fn to_i16(&self) -> Result<i16> {
        match self {
            Self::I16(v) => Ok(*v),
            v => crate::bail!("not a i16 {v:?}"),
        }
    }

    pub fn to_u32(&self) -> Result<u32> {
        match self {
            Self::U32(v) => Ok(*v),
            v => crate::bail!("not a u32 {v:?}"),
        }
    }

    pub fn to_i32(&self) -> Result<i32> {
        match self {
            Self::I32(v) => Ok(*v),
            v => crate::bail!("not a i32 {v:?}"),
        }
    }

    /// This will also automatically upcast any integral types which will not truncate.
    pub fn to_u64(&self) -> Result<u64> {
        match self {
            Self::U64(v) => Ok(*v),
            // Autoupcast cases here
            Self::U8(v) => Ok(*v as u64),
            Self::U16(v) => Ok(*v as u64),
            Self::U32(v) => Ok(*v as u64),
            Self::Bool(v) => Ok(*v as u64),
            v => crate::bail!("not a u64 or upcastable to u64 {v:?}"),
        }
    }

    pub fn to_i64(&self) -> Result<i64> {
        match self {
            Self::I64(v) => Ok(*v),
            v => crate::bail!("not a i64 {v:?}"),
        }
    }

    pub fn to_f32(&self) -> Result<f32> {
        match self {
            Self::F32(v) => Ok(*v),
            v => crate::bail!("not a f32 {v:?}"),
        }
    }

    pub fn to_f64(&self) -> Result<f64> {
        match self {
            Self::F64(v) => Ok(*v),
            v => crate::bail!("not a f64 {v:?}"),
        }
    }

    pub fn to_bool(&self) -> Result<bool> {
        match self {
            Self::Bool(v) => Ok(*v),
            v => crate::bail!("not a bool {v:?}"),
        }
    }

    pub fn to_vec(&self) -> Result<&Vec<Value>> {
        match self {
            Self::Array(v) => Ok(v),
            v => crate::bail!("not a vec {v:?}"),
        }
    }

    pub fn to_string(&self) -> Result<&String> {
        match self {
            Self::String(v) => Ok(v),
            v => crate::bail!("not a string {v:?}"),
        }
    }

    fn read<R: std::io::Read>(
        reader: &mut R,
        value_type: ValueType,
        magic: &VersionedMagic,
    ) -> Result<Self> {
        let v = match value_type {
            ValueType::U8 => Self::U8(reader.read_u8()?),
            ValueType::I8 => Self::I8(reader.read_i8()?),
            ValueType::U16 => Self::U16(reader.read_u16::<LittleEndian>()?),
            ValueType::I16 => Self::I16(reader.read_i16::<LittleEndian>()?),
            ValueType::U32 => Self::U32(reader.read_u32::<LittleEndian>()?),
            ValueType::I32 => Self::I32(reader.read_i32::<LittleEndian>()?),
            ValueType::U64 => Self::U64(reader.read_u64::<LittleEndian>()?),
            ValueType::I64 => Self::I64(reader.read_i64::<LittleEndian>()?),
            ValueType::F32 => Self::F32(reader.read_f32::<LittleEndian>()?),
            ValueType::F64 => Self::F64(reader.read_f64::<LittleEndian>()?),
            ValueType::Bool => match reader.read_u8()? {
                0 => Self::Bool(false),
                1 => Self::Bool(true),
                b => crate::bail!("unexpected bool value {b}"),
            },
            ValueType::String => Self::String(read_string(reader, magic)?),
            ValueType::Array => {
                let value_type = reader.read_u32::<LittleEndian>()?;
                let value_type = ValueType::from_u32(value_type)?;
                let len = match magic {
                    VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
                    VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
                        reader.read_u64::<LittleEndian>()? as usize
                    }
                };
                let mut vs = Vec::with_capacity(len);
                for _ in 0..len {
                    vs.push(Value::read(reader, value_type, magic)?)
                }
                Self::Array(vs)
            }
        };
        Ok(v)
    }

    fn write<W: std::io::Write>(&self, w: &mut W) -> Result<()> {
        match self {
            &Self::U8(v) => w.write_u8(v)?,
            &Self::I8(v) => w.write_i8(v)?,
            &Self::U16(v) => w.write_u16::<LittleEndian>(v)?,
            &Self::I16(v) => w.write_i16::<LittleEndian>(v)?,
            &Self::U32(v) => w.write_u32::<LittleEndian>(v)?,
            &Self::I32(v) => w.write_i32::<LittleEndian>(v)?,
            &Self::U64(v) => w.write_u64::<LittleEndian>(v)?,
            &Self::I64(v) => w.write_i64::<LittleEndian>(v)?,
            &Self::F32(v) => w.write_f32::<LittleEndian>(v)?,
            &Self::F64(v) => w.write_f64::<LittleEndian>(v)?,
            &Self::Bool(v) => w.write_u8(u8::from(v))?,
            Self::String(v) => write_string(w, v.as_str())?,
            Self::Array(v) => {
                // The `Value` type does not enforce that all the values in an Array have the same
                // type.
                let value_type = if v.is_empty() {
                    // Doesn't matter, the array is empty.
                    ValueType::U32
                } else {
                    let value_type: std::collections::HashSet<_> =
                        v.iter().map(|elem| elem.value_type()).collect();
                    if value_type.len() != 1 {
                        crate::bail!("multiple value-types in the same array {value_type:?}")
                    }
                    value_type.into_iter().next().unwrap()
                };
                w.write_u32::<LittleEndian>(value_type.to_u32())?;
                w.write_u64::<LittleEndian>(v.len() as u64)?;
                for elem in v.iter() {
                    elem.write(w)?
                }
            }
        }
        Ok(())
    }
}

impl ValueType {
    fn from_u32(v: u32) -> Result<Self> {
        let v = match v {
            0 => Self::U8,
            1 => Self::I8,
            2 => Self::U16,
            3 => Self::I16,
            4 => Self::U32,
            5 => Self::I32,
            6 => Self::F32,
            7 => Self::Bool,
            8 => Self::String,
            9 => Self::Array,
            10 => Self::U64,
            11 => Self::I64,
            12 => Self::F64,
            v => crate::bail!("unrecognized value-type {v:#08x}"),
        };
        Ok(v)
    }

    fn to_u32(self) -> u32 {
        match self {
            Self::U8 => 0,
            Self::I8 => 1,
            Self::U16 => 2,
            Self::I16 => 3,
            Self::U32 => 4,
            Self::I32 => 5,
            Self::F32 => 6,
            Self::Bool => 7,
            Self::String => 8,
            Self::Array => 9,
            Self::U64 => 10,
            Self::I64 => 11,
            Self::F64 => 12,
        }
    }
}

impl Content {
    pub fn read<R: std::io::Seek + std::io::Read>(reader: &mut R) -> Result<Self> {
        let magic = VersionedMagic::read(reader)?;

        let tensor_count = match magic {
            VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
            VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
                reader.read_u64::<LittleEndian>()? as usize
            }
        };
        let metadata_kv_count = match magic {
            VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
            VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
                reader.read_u64::<LittleEndian>()? as usize
            }
        };

        let mut metadata = HashMap::new();
        for _idx in 0..metadata_kv_count {
            let key = read_string(reader, &magic)?;
            let value_type = reader.read_u32::<LittleEndian>()?;
            let value_type = ValueType::from_u32(value_type)?;
            let value = Value::read(reader, value_type, &magic)?;
            metadata.insert(key, value);
        }
        let mut tensor_infos = HashMap::new();
        for _idx in 0..tensor_count {
            let tensor_name = read_string(reader, &magic)?;
            let n_dimensions = reader.read_u32::<LittleEndian>()?;

            let mut dimensions: Vec<usize> = match magic {
                VersionedMagic::GgufV1 => {
                    let mut dimensions = vec![0; n_dimensions as usize];
                    reader.read_u32_into::<LittleEndian>(&mut dimensions)?;
                    dimensions.into_iter().map(|c| c as usize).collect()
                }
                VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
                    let mut dimensions = vec![0; n_dimensions as usize];
                    reader.read_u64_into::<LittleEndian>(&mut dimensions)?;
                    dimensions.into_iter().map(|c| c as usize).collect()
                }
            };

            dimensions.reverse();
            let ggml_dtype = reader.read_u32::<LittleEndian>()?;
            let ggml_dtype = GgmlDType::from_u32(ggml_dtype)?;
            let offset = reader.read_u64::<LittleEndian>()?;
            tensor_infos.insert(
                tensor_name,
                TensorInfo {
                    shape: crate::Shape::from(dimensions),
                    offset,
                    ggml_dtype,
                },
            );
        }
        let position = reader.stream_position()?;
        let alignment = match metadata.get("general.alignment") {
            Some(Value::U8(v)) => *v as u64,
            Some(Value::U16(v)) => *v as u64,
            Some(Value::U32(v)) => *v as u64,
            Some(Value::I8(v)) if *v >= 0 => *v as u64,
            Some(Value::I16(v)) if *v >= 0 => *v as u64,
            Some(Value::I32(v)) if *v >= 0 => *v as u64,
            _ => DEFAULT_ALIGNMENT,
        };
        let tensor_data_offset = (position + alignment - 1) / alignment * alignment;
        Ok(Self {
            magic,
            metadata,
            tensor_infos,
            tensor_data_offset,
        })
    }

    pub fn tensor<R: std::io::Seek + std::io::Read>(
        &self,
        reader: &mut R,
        name: &str,
        device: &Device,
    ) -> Result<QTensor> {
        let tensor_info = match self.tensor_infos.get(name) {
            Some(tensor_info) => tensor_info,
            None => crate::bail!("cannot find tensor info for {name}"),
        };
        tensor_info.read(reader, self.tensor_data_offset, device)
    }
}

fn write_string<W: std::io::Write>(w: &mut W, str: &str) -> Result<()> {
    let bytes = str.as_bytes();
    w.write_u64::<LittleEndian>(bytes.len() as u64)?;
    w.write_all(bytes)?;
    Ok(())
}

pub fn write<W: std::io::Seek + std::io::Write>(
    w: &mut W,
    metadata: &[(&str, &Value)],
    tensors: &[(&str, &QTensor)],
) -> Result<()> {
    w.write_u32::<LittleEndian>(0x46554747)?;
    w.write_u32::<LittleEndian>(2)?; // version 2.
    w.write_u64::<LittleEndian>(tensors.len() as u64)?;
    w.write_u64::<LittleEndian>(metadata.len() as u64)?;
    for (name, value) in metadata.iter() {
        write_string(w, name)?;
        w.write_u32::<LittleEndian>(value.value_type().to_u32())?;
        value.write(w)?;
    }
    let mut offset = 0usize;
    let mut offsets = Vec::with_capacity(tensors.len());
    for (name, tensor) in tensors.iter() {
        write_string(w, name)?;
        let dims = tensor.shape().dims();
        w.write_u32::<LittleEndian>(dims.len() as u32)?;
        for &dim in dims.iter().rev() {
            w.write_u64::<LittleEndian>(dim as u64)?;
        }
        w.write_u32::<LittleEndian>(tensor.dtype().to_u32())?;
        w.write_u64::<LittleEndian>(offset as u64)?;
        offsets.push(offset);
        let size_in_bytes = tensor.storage_size_in_bytes();
        let padding = 31 - (31 + size_in_bytes) % 32;
        offset += size_in_bytes + padding;
    }
    let pos = w.stream_position()? as usize;
    let padding = 31 - (31 + pos) % 32;
    w.write_all(&vec![0u8; padding])?;
    let tensor_start_pos = w.stream_position()? as usize;
    for (offset, (_name, tensor)) in offsets.iter().zip(tensors.iter()) {
        let pos = w.stream_position()? as usize;
        if tensor_start_pos + offset != pos {
            crate::bail!(
                "internal error, unexpected current position {tensor_start_pos} {offset} {pos}"
            )
        }
        let data = tensor.data()?;
        let size_in_bytes = data.len();
        w.write_all(&data)?;
        let padding = 31 - (31 + size_in_bytes) % 32;
        w.write_all(&vec![0u8; padding])?;
    }
    Ok(())
}