#![allow(clippy::redundant_closure_call)]
use crate::{Error, Result};
#[derive(Clone, PartialEq, Eq)]
pub struct Shape(Vec<usize>);
pub const SCALAR: Shape = Shape(vec![]);
impl std::fmt::Debug for Shape {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:?}", &self.dims())
}
}
impl<const C: usize> From<&[usize; C]> for Shape {
fn from(dims: &[usize; C]) -> Self {
Self(dims.to_vec())
}
}
impl From<&[usize]> for Shape {
fn from(dims: &[usize]) -> Self {
Self(dims.to_vec())
}
}
impl From<&Shape> for Shape {
fn from(shape: &Shape) -> Self {
Self(shape.0.to_vec())
}
}
impl From<()> for Shape {
fn from(_: ()) -> Self {
Self(vec![])
}
}
impl From<usize> for Shape {
fn from(d1: usize) -> Self {
Self(vec![d1])
}
}
impl From<(usize,)> for Shape {
fn from(d1: (usize,)) -> Self {
Self(vec![d1.0])
}
}
impl From<(usize, usize)> for Shape {
fn from(d12: (usize, usize)) -> Self {
Self(vec![d12.0, d12.1])
}
}
impl From<(usize, usize, usize)> for Shape {
fn from(d123: (usize, usize, usize)) -> Self {
Self(vec![d123.0, d123.1, d123.2])
}
}
impl From<(usize, usize, usize, usize)> for Shape {
fn from(d1234: (usize, usize, usize, usize)) -> Self {
Self(vec![d1234.0, d1234.1, d1234.2, d1234.3])
}
}
impl From<(usize, usize, usize, usize, usize)> for Shape {
fn from(d12345: (usize, usize, usize, usize, usize)) -> Self {
Self(vec![d12345.0, d12345.1, d12345.2, d12345.3, d12345.4])
}
}
impl From<(usize, usize, usize, usize, usize, usize)> for Shape {
fn from(d123456: (usize, usize, usize, usize, usize, usize)) -> Self {
Self(vec![
d123456.0, d123456.1, d123456.2, d123456.3, d123456.4, d123456.5,
])
}
}
impl From<Vec<usize>> for Shape {
fn from(dims: Vec<usize>) -> Self {
Self(dims)
}
}
macro_rules! extract_dims {
($fn_name:ident, $cnt:tt, $dims:expr, $out_type:ty) => {
pub fn $fn_name(dims: &[usize]) -> Result<$out_type> {
if dims.len() != $cnt {
Err(Error::UnexpectedNumberOfDims {
expected: $cnt,
got: dims.len(),
shape: Shape::from(dims),
}
.bt())
} else {
Ok($dims(dims))
}
}
impl Shape {
pub fn $fn_name(&self) -> Result<$out_type> {
$fn_name(self.0.as_slice())
}
}
impl crate::Tensor {
pub fn $fn_name(&self) -> Result<$out_type> {
self.shape().$fn_name()
}
}
impl std::convert::TryInto<$out_type> for Shape {
type Error = crate::Error;
fn try_into(self) -> std::result::Result<$out_type, Self::Error> {
self.$fn_name()
}
}
};
}
impl Shape {
pub fn from_dims(dims: &[usize]) -> Self {
Self(dims.to_vec())
}
pub fn rank(&self) -> usize {
self.0.len()
}
pub fn into_dims(self) -> Vec<usize> {
self.0
}
pub fn dims(&self) -> &[usize] {
&self.0
}
pub fn dim<D: Dim>(&self, dim: D) -> Result<usize> {
let dim = dim.to_index(self, "dim")?;
Ok(self.dims()[dim])
}
pub fn elem_count(&self) -> usize {
self.0.iter().product()
}
pub(crate) fn stride_contiguous(&self) -> Vec<usize> {
let mut stride: Vec<_> = self
.0
.iter()
.rev()
.scan(1, |prod, u| {
let prod_pre_mult = *prod;
*prod *= u;
Some(prod_pre_mult)
})
.collect();
stride.reverse();
stride
}
pub fn is_contiguous(&self, stride: &[usize]) -> bool {
if self.0.len() != stride.len() {
return false;
}
let mut acc = 1;
for (&stride, &dim) in stride.iter().zip(self.0.iter()).rev() {
if dim > 1 && stride != acc {
return false;
}
acc *= dim;
}
true
}
pub fn is_fortran_contiguous(&self, stride: &[usize]) -> bool {
if self.0.len() != stride.len() {
return false;
}
let mut acc = 1;
for (&stride, &dim) in stride.iter().zip(self.0.iter()) {
if dim > 1 && stride != acc {
return false;
}
acc *= dim;
}
true
}
pub fn extend(mut self, additional_dims: &[usize]) -> Self {
self.0.extend(additional_dims);
self
}
pub fn broadcast_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<Shape> {
let lhs = self;
let lhs_dims = lhs.dims();
let rhs_dims = rhs.dims();
let lhs_ndims = lhs_dims.len();
let rhs_ndims = rhs_dims.len();
let bcast_ndims = usize::max(lhs_ndims, rhs_ndims);
let mut bcast_dims = vec![0; bcast_ndims];
for (idx, bcast_value) in bcast_dims.iter_mut().enumerate() {
let rev_idx = bcast_ndims - idx;
let l_value = if lhs_ndims < rev_idx {
1
} else {
lhs_dims[lhs_ndims - rev_idx]
};
let r_value = if rhs_ndims < rev_idx {
1
} else {
rhs_dims[rhs_ndims - rev_idx]
};
*bcast_value = if l_value == r_value {
l_value
} else if l_value == 1 {
r_value
} else if r_value == 1 {
l_value
} else {
Err(Error::ShapeMismatchBinaryOp {
lhs: lhs.clone(),
rhs: rhs.clone(),
op,
}
.bt())?
}
}
Ok(Shape::from(bcast_dims))
}
pub(crate) fn broadcast_shape_matmul(&self, rhs: &Self) -> Result<(Shape, Shape)> {
let lhs = self;
let lhs_dims = lhs.dims();
let rhs_dims = rhs.dims();
if lhs_dims.len() < 2 || rhs_dims.len() < 2 {
crate::bail!("only 2d matrixes are supported {lhs:?} {rhs:?}")
}
let (m, lhs_k) = (lhs_dims[lhs_dims.len() - 2], lhs_dims[lhs_dims.len() - 1]);
let (rhs_k, n) = (rhs_dims[rhs_dims.len() - 2], rhs_dims[rhs_dims.len() - 1]);
if lhs_k != rhs_k {
crate::bail!("different inner dimensions in broadcast matmul {lhs:?} {rhs:?}")
}
let lhs_b = Self::from(&lhs_dims[..lhs_dims.len() - 2]);
let rhs_b = Self::from(&rhs_dims[..rhs_dims.len() - 2]);
let bcast = lhs_b.broadcast_shape_binary_op(&rhs_b, "broadcast_matmul")?;
let bcast_dims = bcast.dims();
let bcast_lhs = [bcast_dims, &[m, lhs_k]].concat();
let bcast_rhs = [bcast_dims, &[rhs_k, n]].concat();
Ok((Shape::from(bcast_lhs), Shape::from(bcast_rhs)))
}
}
pub trait Dim {
fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize>;
fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize>;
}
impl Dim for usize {
fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize> {
let dim = *self;
if dim >= shape.dims().len() {
Err(Error::DimOutOfRange {
shape: shape.clone(),
dim: dim as i32,
op,
}
.bt())?
} else {
Ok(dim)
}
}
fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize> {
let dim = *self;
if dim > shape.dims().len() {
Err(Error::DimOutOfRange {
shape: shape.clone(),
dim: dim as i32,
op,
}
.bt())?
} else {
Ok(dim)
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum D {
Minus1,
Minus2,
Minus(usize),
}
impl D {
fn out_of_range(&self, shape: &Shape, op: &'static str) -> Error {
let dim = match self {
Self::Minus1 => -1,
Self::Minus2 => -2,
Self::Minus(u) => -(*u as i32),
};
Error::DimOutOfRange {
shape: shape.clone(),
dim,
op,
}
.bt()
}
}
impl Dim for D {
fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize> {
let rank = shape.rank();
match self {
Self::Minus1 if rank >= 1 => Ok(rank - 1),
Self::Minus2 if rank >= 2 => Ok(rank - 2),
Self::Minus(u) if *u > 0 && rank >= *u => Ok(rank - *u),
_ => Err(self.out_of_range(shape, op)),
}
}
fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize> {
let rank = shape.rank();
match self {
Self::Minus1 => Ok(rank),
Self::Minus2 if rank >= 1 => Ok(rank - 1),
Self::Minus(u) if *u > 0 && rank + 1 >= *u => Ok(rank + 1 - *u),
_ => Err(self.out_of_range(shape, op)),
}
}
}
pub trait Dims: Sized {
fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>>;
fn to_indexes(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
let dims = self.to_indexes_internal(shape, op)?;
for (i, &dim) in dims.iter().enumerate() {
if dims[..i].contains(&dim) {
Err(Error::DuplicateDimIndex {
shape: shape.clone(),
dims: dims.clone(),
op,
}
.bt())?
}
if dim >= shape.rank() {
Err(Error::DimOutOfRange {
shape: shape.clone(),
dim: dim as i32,
op,
}
.bt())?
}
}
Ok(dims)
}
}
impl Dims for Vec<usize> {
fn to_indexes_internal(self, _: &Shape, _: &'static str) -> Result<Vec<usize>> {
Ok(self)
}
}
impl<const N: usize> Dims for [usize; N] {
fn to_indexes_internal(self, _: &Shape, _: &'static str) -> Result<Vec<usize>> {
Ok(self.to_vec())
}
}
impl Dims for &[usize] {
fn to_indexes_internal(self, _: &Shape, _: &'static str) -> Result<Vec<usize>> {
Ok(self.to_vec())
}
}
impl Dims for () {
fn to_indexes_internal(self, _: &Shape, _: &'static str) -> Result<Vec<usize>> {
Ok(vec![])
}
}
impl<D: Dim + Sized> Dims for D {
fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
let dim = self.to_index(shape, op)?;
Ok(vec![dim])
}
}
impl<D: Dim> Dims for (D,) {
fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
let dim = self.0.to_index(shape, op)?;
Ok(vec![dim])
}
}
impl<D1: Dim, D2: Dim> Dims for (D1, D2) {
fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
let d0 = self.0.to_index(shape, op)?;
let d1 = self.1.to_index(shape, op)?;
Ok(vec![d0, d1])
}
}
impl<D1: Dim, D2: Dim, D3: Dim> Dims for (D1, D2, D3) {
fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
let d0 = self.0.to_index(shape, op)?;
let d1 = self.1.to_index(shape, op)?;
let d2 = self.2.to_index(shape, op)?;
Ok(vec![d0, d1, d2])
}
}
impl<D1: Dim, D2: Dim, D3: Dim, D4: Dim> Dims for (D1, D2, D3, D4) {
fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
let d0 = self.0.to_index(shape, op)?;
let d1 = self.1.to_index(shape, op)?;
let d2 = self.2.to_index(shape, op)?;
let d3 = self.3.to_index(shape, op)?;
Ok(vec![d0, d1, d2, d3])
}
}
impl<D1: Dim, D2: Dim, D3: Dim, D4: Dim, D5: Dim> Dims for (D1, D2, D3, D4, D5) {
fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
let d0 = self.0.to_index(shape, op)?;
let d1 = self.1.to_index(shape, op)?;
let d2 = self.2.to_index(shape, op)?;
let d3 = self.3.to_index(shape, op)?;
let d4 = self.4.to_index(shape, op)?;
Ok(vec![d0, d1, d2, d3, d4])
}
}
impl<D1: Dim, D2: Dim, D3: Dim, D4: Dim, D5: Dim, D6: Dim> Dims for (D1, D2, D3, D4, D5, D6) {
fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> {
let d0 = self.0.to_index(shape, op)?;
let d1 = self.1.to_index(shape, op)?;
let d2 = self.2.to_index(shape, op)?;
let d3 = self.3.to_index(shape, op)?;
let d4 = self.4.to_index(shape, op)?;
let d5 = self.5.to_index(shape, op)?;
Ok(vec![d0, d1, d2, d3, d4, d5])
}
}
extract_dims!(dims0, 0, |_: &[usize]| (), ());
extract_dims!(dims1, 1, |d: &[usize]| d[0], usize);
extract_dims!(dims2, 2, |d: &[usize]| (d[0], d[1]), (usize, usize));
extract_dims!(
dims3,
3,
|d: &[usize]| (d[0], d[1], d[2]),
(usize, usize, usize)
);
extract_dims!(
dims4,
4,
|d: &[usize]| (d[0], d[1], d[2], d[3]),
(usize, usize, usize, usize)
);
extract_dims!(
dims5,
5,
|d: &[usize]| (d[0], d[1], d[2], d[3], d[4]),
(usize, usize, usize, usize, usize)
);
pub trait ShapeWithOneHole {
fn into_shape(self, el_count: usize) -> Result<Shape>;
}
impl<S: Into<Shape>> ShapeWithOneHole for S {
fn into_shape(self, _el_count: usize) -> Result<Shape> {
Ok(self.into())
}
}
impl ShapeWithOneHole for ((),) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
Ok(el_count.into())
}
}
fn hole_size(el_count: usize, prod_d: usize, s: &dyn std::fmt::Debug) -> Result<usize> {
if prod_d == 0 {
crate::bail!("cannot reshape tensor of {el_count} elements to {s:?}")
}
if el_count % prod_d != 0 {
crate::bail!("cannot reshape tensor with {el_count} elements to {s:?}")
}
Ok(el_count / prod_d)
}
impl ShapeWithOneHole for ((), usize) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let ((), d1) = self;
Ok((hole_size(el_count, d1, &self)?, d1).into())
}
}
impl ShapeWithOneHole for (usize, ()) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let (d1, ()) = self;
Ok((d1, hole_size(el_count, d1, &self)?).into())
}
}
impl ShapeWithOneHole for ((), usize, usize) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let ((), d1, d2) = self;
Ok((hole_size(el_count, d1 * d2, &self)?, d1, d2).into())
}
}
impl ShapeWithOneHole for (usize, (), usize) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let (d1, (), d2) = self;
Ok((d1, hole_size(el_count, d1 * d2, &self)?, d2).into())
}
}
impl ShapeWithOneHole for (usize, usize, ()) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let (d1, d2, ()) = self;
Ok((d1, d2, hole_size(el_count, d1 * d2, &self)?).into())
}
}
impl ShapeWithOneHole for ((), usize, usize, usize) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let ((), d1, d2, d3) = self;
let d = hole_size(el_count, d1 * d2 * d3, &self)?;
Ok((d, d1, d2, d3).into())
}
}
impl ShapeWithOneHole for (usize, (), usize, usize) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let (d1, (), d2, d3) = self;
let d = hole_size(el_count, d1 * d2 * d3, &self)?;
Ok((d1, d, d2, d3).into())
}
}
impl ShapeWithOneHole for (usize, usize, (), usize) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let (d1, d2, (), d3) = self;
let d = hole_size(el_count, d1 * d2 * d3, &self)?;
Ok((d1, d2, d, d3).into())
}
}
impl ShapeWithOneHole for (usize, usize, usize, ()) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let (d1, d2, d3, ()) = self;
let d = hole_size(el_count, d1 * d2 * d3, &self)?;
Ok((d1, d2, d3, d).into())
}
}
impl ShapeWithOneHole for ((), usize, usize, usize, usize) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let ((), d1, d2, d3, d4) = self;
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
Ok((d, d1, d2, d3, d4).into())
}
}
impl ShapeWithOneHole for (usize, (), usize, usize, usize) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let (d1, (), d2, d3, d4) = self;
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
Ok((d1, d, d2, d3, d4).into())
}
}
impl ShapeWithOneHole for (usize, usize, (), usize, usize) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let (d1, d2, (), d3, d4) = self;
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
Ok((d1, d2, d, d3, d4).into())
}
}
impl ShapeWithOneHole for (usize, usize, usize, (), usize) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let (d1, d2, d3, (), d4) = self;
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
Ok((d1, d2, d3, d, d4).into())
}
}
impl ShapeWithOneHole for (usize, usize, usize, usize, ()) {
fn into_shape(self, el_count: usize) -> Result<Shape> {
let (d1, d2, d3, d4, ()) = self;
let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?;
Ok((d1, d2, d3, d4, d).into())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn stride() {
let shape = Shape::from(());
assert_eq!(shape.stride_contiguous(), Vec::<usize>::new());
let shape = Shape::from(42);
assert_eq!(shape.stride_contiguous(), [1]);
let shape = Shape::from((42, 1337));
assert_eq!(shape.stride_contiguous(), [1337, 1]);
let shape = Shape::from((299, 792, 458));
assert_eq!(shape.stride_contiguous(), [458 * 792, 458, 1]);
}
}