1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
/*
* Copyright 2022-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use super::{
AttributeType, JsonDeserializationError, JsonDeserializationErrorContext,
JsonSerializationError, SchemaType,
};
use crate::ast::{
BorrowedRestrictedExpr, Eid, EntityUID, Expr, ExprKind, Literal, Name, RestrictedExpr,
};
use crate::entities::EscapeKind;
use crate::extensions::{Extensions, ExtensionsError};
use crate::FromNormalizedStr;
use serde::{Deserialize, Serialize};
use smol_str::SmolStr;
use std::collections::{HashMap, HashSet};
/// The canonical JSON representation of a Cedar value.
/// Many Cedar values have a natural one-to-one mapping to and from JSON values.
/// Cedar values of some types, like entity references or extension values,
/// cannot easily be represented in JSON and thus are represented using the
/// `__expr`, `__entity`, or `__extn` escapes.
///
/// For example, this is the JSON format for attribute values expected by
/// `EntityJsonParser`, when schema-based parsing is not used.
#[derive(Debug, Clone, PartialEq, Eq, Deserialize, Serialize)]
#[serde(untagged)]
pub enum JSONValue {
/// Special JSON object with single reserved "__expr" key:
/// interpret the following string as a (restricted) Cedar expression.
/// Some escape (this or the following ones) is necessary for extension
/// values and entity references, but this `__expr` escape could also be
/// used for any other values.
///
/// `__expr` is deprecated (starting with the 1.2 release) and will be
/// removed in favor of `__entity` and `__extn`, which together cover all of
/// the use-cases where `__expr` would have been necessary.
//
// listed before `Record` so that it takes priority: otherwise, the escape
// would be interpreted as a Record with a key "__expr". see docs on
// `serde(untagged)`
ExprEscape {
/// String to interpret as a (restricted) Cedar expression
__expr: SmolStr,
},
/// Special JSON object with single reserved "__entity" key:
/// the following item should be a JSON object of the form
/// `{ "type": "xxx", "id": "yyy" }`.
/// Some escape (this or `__expr`, which is deprecated) is necessary for
/// entity references.
//
// listed before `Record` so that it takes priority: otherwise, the escape
// would be interpreted as a Record with a key "__entity". see docs on
// `serde(untagged)`
EntityEscape {
/// JSON object containing the entity type and ID
__entity: TypeAndId,
},
/// Special JSON object with single reserved "__extn" key:
/// the following item should be a JSON object of the form
/// `{ "fn": "xxx", "arg": "yyy" }`.
/// Some escape (this or `__expr`, which is deprecated) is necessary for
/// extension values.
//
// listed before `Record` so that it takes priority: otherwise, the escape
// would be interpreted as a Record with a key "__extn". see docs on
// `serde(untagged)`
ExtnEscape {
/// JSON object containing the extension-constructor call
__extn: FnAndArg,
},
/// JSON bool => Cedar bool
Bool(bool),
/// JSON int => Cedar long (64-bit signed integer)
Long(i64),
/// JSON string => Cedar string
String(SmolStr),
/// JSON list => Cedar set; can contain any JSONValues, even
/// heterogeneously
Set(Vec<JSONValue>),
/// JSON object => Cedar record; must have string keys, but values
/// can be any JSONValues, even heterogeneously
Record(HashMap<SmolStr, JSONValue>),
}
/// Structure expected by the `__entity` escape
#[derive(Debug, Clone, PartialEq, Eq, Deserialize, Serialize)]
pub struct TypeAndId {
/// Entity typename
#[serde(rename = "type")]
entity_type: SmolStr,
/// Entity id
id: SmolStr,
}
impl From<EntityUID> for TypeAndId {
fn from(euid: EntityUID) -> TypeAndId {
let (entity_type, eid) = euid.components();
TypeAndId {
entity_type: entity_type.to_string().into(),
id: AsRef::<str>::as_ref(&eid).into(),
}
}
}
impl From<&EntityUID> for TypeAndId {
fn from(euid: &EntityUID) -> TypeAndId {
TypeAndId {
entity_type: euid.entity_type().to_string().into(),
id: AsRef::<str>::as_ref(&euid.eid()).into(),
}
}
}
impl TryFrom<TypeAndId> for EntityUID {
type Error = crate::parser::err::ParseErrors;
fn try_from(e: TypeAndId) -> Result<EntityUID, Self::Error> {
Ok(EntityUID::from_components(
Name::from_normalized_str(&e.entity_type)?,
Eid::new(e.id),
))
}
}
/// Structure expected by the `__extn` escape
#[derive(Debug, Clone, PartialEq, Eq, Deserialize, Serialize)]
pub struct FnAndArg {
/// Extension constructor function
#[serde(rename = "fn")]
ext_fn: SmolStr,
/// Argument to that constructor
arg: Box<JSONValue>,
}
impl JSONValue {
/// Encode the given `EntityUID` as a `JSONValue`
pub fn uid(euid: &EntityUID) -> Self {
Self::EntityEscape {
__entity: TypeAndId::from(euid.clone()),
}
}
/// Convert this JSONValue into a Cedar "restricted expression"
pub fn into_expr(self) -> Result<RestrictedExpr, JsonDeserializationError> {
match self {
Self::Bool(b) => Ok(RestrictedExpr::val(b)),
Self::Long(i) => Ok(RestrictedExpr::val(i)),
Self::String(s) => Ok(RestrictedExpr::val(s)),
Self::Set(vals) => Ok(RestrictedExpr::set(
vals.into_iter()
.map(JSONValue::into_expr)
.collect::<Result<Vec<_>, _>>()?,
)),
Self::Record(map) => Ok(RestrictedExpr::record(
map.into_iter()
.map(|(k, v)| Ok((k, v.into_expr()?)))
.collect::<Result<Vec<_>, JsonDeserializationError>>()?,
)),
Self::ExprEscape { __expr: expr } => {
use crate::parser;
let expr: Expr = parser::parse_expr(&expr).map_err(|errs| {
JsonDeserializationError::ParseEscape {
kind: EscapeKind::Expr,
value: expr.to_string(),
errs,
}
})?;
Ok(RestrictedExpr::new(expr)?)
}
Self::EntityEscape { __entity: entity } => Ok(RestrictedExpr::val(
EntityUID::try_from(entity.clone()).map_err(|errs| {
JsonDeserializationError::ParseEscape {
kind: EscapeKind::Entity,
value: serde_json::to_string_pretty(&entity)
.unwrap_or_else(|_| format!("{:?}", &entity)),
errs,
}
})?,
)),
Self::ExtnEscape { __extn: extn } => extn.into_expr(),
}
}
/// Convert a Cedar "restricted expression" into a `JSONValue`.
pub fn from_expr(expr: BorrowedRestrictedExpr<'_>) -> Result<Self, JsonSerializationError> {
match expr.as_ref().expr_kind() {
ExprKind::Lit(lit) => Ok(Self::from_lit(lit.clone())),
ExprKind::ExtensionFunctionApp { fn_name, args } => match args.len() {
0 => Err(JsonSerializationError::ExtnCall0Arguments {
func: fn_name.clone(),
}),
// PANIC SAFETY. We've checked that `args` is of length 1, fine to index at 0
#[allow(clippy::indexing_slicing)]
1 => Ok(Self::ExtnEscape {
__extn: FnAndArg {
ext_fn: fn_name.to_string().into(),
arg: Box::new(JSONValue::from_expr(
BorrowedRestrictedExpr::new_unchecked(
// assuming the invariant holds for `expr`, it must also hold here
&args[0], // checked above that |args| == 1
),
)?),
},
}),
_ => Err(JsonSerializationError::ExtnCall2OrMoreArguments {
func: fn_name.clone(),
}),
},
ExprKind::Set(exprs) => Ok(Self::Set(
exprs
.iter()
.map(BorrowedRestrictedExpr::new_unchecked) // assuming the invariant holds for `expr`, it must also hold here
.map(JSONValue::from_expr)
.collect::<Result<_, JsonSerializationError>>()?,
)),
ExprKind::Record { pairs } => {
// if `pairs` contains a key which collides with one of our JSON
// escapes, then we have a problem because it would be interpreted
// as an escape when being read back in.
// We could be a little more permissive here, but to be
// conservative, we throw an error for any record that contains
// any key with a reserved name, not just single-key records
// with the reserved names.
let reserved_keys: HashSet<&str> =
HashSet::from_iter(["__entity", "__extn", "__expr"]);
let collision = pairs
.iter()
.find(|(k, _)| reserved_keys.contains(k.as_str()));
if let Some(collision) = collision {
Err(JsonSerializationError::ReservedKey {
key: collision.0.clone(),
})
} else {
// the common case: the record doesn't use any reserved keys
Ok(Self::Record(
pairs
.iter()
.map(|(k, v)| {
Ok((
k.clone(),
JSONValue::from_expr(BorrowedRestrictedExpr::new_unchecked(v))?, // assuming the invariant holds for `expr`, it must also hold here
))
})
.collect::<Result<_, JsonSerializationError>>()?,
))
}
}
kind => {
Err(JsonSerializationError::UnexpectedRestrictedExprKind { kind: kind.clone() })
}
}
}
/// Convert a Cedar literal into a `JSONValue`.
pub fn from_lit(lit: Literal) -> Self {
match lit {
Literal::Bool(b) => Self::Bool(b),
Literal::Long(i) => Self::Long(i),
Literal::String(s) => Self::String(s),
Literal::EntityUID(euid) => Self::EntityEscape {
__entity: (*euid).clone().into(),
},
}
}
}
impl FnAndArg {
/// Convert this `FnAndArg` into a Cedar "restricted expression" (which will be a call to an extension constructor)
pub fn into_expr(self) -> Result<RestrictedExpr, JsonDeserializationError> {
Ok(RestrictedExpr::call_extension_fn(
Name::from_normalized_str(&self.ext_fn).map_err(|errs| {
JsonDeserializationError::ParseEscape {
kind: EscapeKind::Extension,
value: self.ext_fn.to_string(),
errs,
}
})?,
vec![JSONValue::into_expr(*self.arg)?],
))
}
}
/// Struct used to parse Cedar values from JSON.
#[derive(Debug, Clone)]
pub struct ValueParser<'e> {
/// Extensions which are active for the JSON parsing.
extensions: Extensions<'e>,
}
impl<'e> ValueParser<'e> {
/// Create a new `ValueParser`.
pub fn new(extensions: Extensions<'e>) -> Self {
Self { extensions }
}
/// internal function that converts a Cedar value (in JSON) into a
/// `RestrictedExpr`. Performs schema-based parsing if `expected_ty` is
/// provided.
pub fn val_into_rexpr(
&self,
val: serde_json::Value,
expected_ty: Option<&SchemaType>,
ctx: impl Fn() -> JsonDeserializationErrorContext + Clone,
) -> Result<RestrictedExpr, JsonDeserializationError> {
match expected_ty {
None => {
// ordinary, non-schema-based parsing. Everything is parsed as
// `JSONValue`, and converted into `RestrictedExpr` from that.
let jvalue: JSONValue = serde_json::from_value(val)?;
jvalue.into_expr()
}
// The expected type is an entity reference. Special parsing rules
// apply: for instance, the `__entity` escape can optionally be omitted.
// What this means is that we parse the contents as `EntityUidJSON`, and
// then convert that into an entity reference `RestrictedExpr`
Some(SchemaType::Entity { .. }) => {
let uidjson: EntityUidJSON = serde_json::from_value(val)?;
Ok(RestrictedExpr::val(uidjson.into_euid(ctx)?))
}
// The expected type is an extension type. Special parsing rules apply:
// for instance, the `__extn` escape can optionally be omitted. What
// this means is that we parse the contents as `ExtnValueJSON`, and then
// convert that into an extension-function-call `RestrictedExpr`
Some(SchemaType::Extension { ref name, .. }) => {
let extjson: ExtnValueJSON = serde_json::from_value(val)?;
self.extn_value_json_into_rexpr(extjson, name.clone(), ctx)
}
// The expected type is a set type. No special parsing rules apply, but
// we need to parse the elements according to the expected element type
Some(expected_ty @ SchemaType::Set { element_ty }) => match val {
serde_json::Value::Array(elements) => Ok(RestrictedExpr::set(
elements
.into_iter()
.map(|element| self.val_into_rexpr(element, Some(element_ty), ctx.clone()))
.collect::<Result<Vec<RestrictedExpr>, JsonDeserializationError>>()?,
)),
_ => Err(JsonDeserializationError::TypeMismatch {
ctx: Box::new(ctx()),
expected: Box::new(expected_ty.clone()),
actual: {
let jvalue: JSONValue = serde_json::from_value(val)?;
Box::new(self.type_of_rexpr(jvalue.into_expr()?.as_borrowed(), ctx)?)
},
}),
},
// The expected type is a record type. No special parsing rules
// apply, but we need to parse the attribute values according to
// their expected element types
Some(
expected_ty @ SchemaType::Record {
attrs: expected_attrs,
},
) => match val {
serde_json::Value::Object(mut actual_attrs) => {
let ctx2 = ctx.clone(); // for borrow-check, so the original `ctx` can be moved into the closure below
let mut_actual_attrs = &mut actual_attrs; // for borrow-check, so only a mut ref gets moved into the closure, and we retain ownership of `actual_attrs`
let rexpr_pairs = expected_attrs
.iter()
.filter_map(move |(k, expected_attr_ty)| {
match mut_actual_attrs.remove(k.as_str()) {
Some(actual_attr) => {
match self.val_into_rexpr(actual_attr, Some(expected_attr_ty.schema_type()), ctx.clone()) {
Ok(actual_attr) => Some(Ok((k.clone(), actual_attr))),
Err(e) => Some(Err(e)),
}
}
None if expected_attr_ty.is_required() => Some(Err(JsonDeserializationError::MissingRequiredRecordAttr {
ctx: Box::new(ctx()),
record_attr: k.clone(),
})),
None => None,
}
})
.collect::<Result<Vec<(SmolStr, RestrictedExpr)>, JsonDeserializationError>>()?;
// we've now checked that all expected attrs exist, and removed them from `actual_attrs`.
// we still need to verify that we didn't have any unexpected attrs.
if let Some((record_attr, _)) = actual_attrs.into_iter().next() {
return Err(JsonDeserializationError::UnexpectedRecordAttr {
ctx: Box::new(ctx2()),
record_attr: record_attr.into(),
});
}
Ok(RestrictedExpr::record(rexpr_pairs))
}
_ => Err(JsonDeserializationError::TypeMismatch {
ctx: Box::new(ctx()),
expected: Box::new(expected_ty.clone()),
actual: {
let jvalue: JSONValue = serde_json::from_value(val)?;
Box::new(self.type_of_rexpr(jvalue.into_expr()?.as_borrowed(), ctx)?)
},
}),
},
// The expected type is any other type. No special parsing rules apply,
// and we treat this exactly as the non-schema-based-parsing case.
Some(_) => {
let jvalue: JSONValue = serde_json::from_value(val)?;
jvalue.into_expr()
}
}
}
/// internal function that converts an `ExtnValueJSON` into a
/// `RestrictedExpr`, which will be an extension constructor call.
///
/// `expected_typename`: Specific extension type that is expected.
fn extn_value_json_into_rexpr(
&self,
extnjson: ExtnValueJSON,
expected_typename: Name,
ctx: impl Fn() -> JsonDeserializationErrorContext + Clone,
) -> Result<RestrictedExpr, JsonDeserializationError> {
match extnjson {
ExtnValueJSON::ExplicitExprEscape { __expr } => {
// reuse the same logic that parses JSONValue
let jvalue = JSONValue::ExprEscape { __expr };
let expr = jvalue.into_expr()?;
match expr.expr_kind() {
ExprKind::ExtensionFunctionApp { .. } => Ok(expr),
_ => Err(JsonDeserializationError::ExpectedExtnValue {
ctx: Box::new(ctx()),
got: Box::new(expr.clone().into()),
}),
}
}
ExtnValueJSON::ExplicitExtnEscape { __extn }
| ExtnValueJSON::ImplicitExtnEscape(__extn) => {
// reuse the same logic that parses JSONValue
let jvalue = JSONValue::ExtnEscape { __extn };
let expr = jvalue.into_expr()?;
match expr.expr_kind() {
ExprKind::ExtensionFunctionApp { .. } => Ok(expr),
_ => Err(JsonDeserializationError::ExpectedExtnValue {
ctx: Box::new(ctx()),
got: Box::new(expr.clone().into()),
}),
}
}
ExtnValueJSON::ImplicitConstructor(val) => {
let arg = val.into_expr()?;
let argty = self.type_of_rexpr(arg.as_borrowed(), ctx.clone())?;
let func = self
.extensions
.lookup_single_arg_constructor(
&SchemaType::Extension {
name: expected_typename.clone(),
},
&argty,
)?
.ok_or_else(|| JsonDeserializationError::MissingImpliedConstructor {
ctx: Box::new(ctx()),
return_type: Box::new(SchemaType::Extension {
name: expected_typename,
}),
arg_type: Box::new(argty.clone()),
})?;
Ok(RestrictedExpr::call_extension_fn(
func.name().clone(),
vec![arg],
))
}
}
}
/// Get the `SchemaType` of a restricted expression.
///
/// This isn't possible for general `Expr`s (without a Request, full schema,
/// etc), but is possible for restricted expressions, given the information
/// in `Extensions`.
pub fn type_of_rexpr(
&self,
rexpr: BorrowedRestrictedExpr<'_>,
ctx: impl Fn() -> JsonDeserializationErrorContext + Clone,
) -> Result<SchemaType, JsonDeserializationError> {
match rexpr.expr_kind() {
ExprKind::Lit(Literal::Bool(_)) => Ok(SchemaType::Bool),
ExprKind::Lit(Literal::Long(_)) => Ok(SchemaType::Long),
ExprKind::Lit(Literal::String(_)) => Ok(SchemaType::String),
ExprKind::Lit(Literal::EntityUID(uid)) => Ok(SchemaType::Entity { ty: uid.entity_type().clone() }),
ExprKind::Set(elements) => {
let mut element_types = elements.iter().map(|el| {
self.type_of_rexpr(BorrowedRestrictedExpr::new_unchecked(el), ctx.clone()) // assuming the invariant holds for the set as a whole, it will also hold for each element
});
match element_types.next() {
None => Ok(SchemaType::EmptySet),
Some(Err(e)) => Err(e),
Some(Ok(element_ty)) => {
let matches_element_ty = |ty: &Result<SchemaType, JsonDeserializationError>| matches!(ty, Ok(ty) if ty.is_consistent_with(&element_ty));
let conflicting_ty = element_types.find(|ty| !matches_element_ty(ty));
match conflicting_ty {
None => Ok(SchemaType::Set { element_ty: Box::new(element_ty) }),
Some(Ok(conflicting_ty)) =>
Err(JsonDeserializationError::HeterogeneousSet {
ctx: Box::new(ctx()),
ty1: Box::new(element_ty),
ty2: Box::new(conflicting_ty),
}),
Some(Err(e)) => Err(e),
}
}
}
}
ExprKind::Record { pairs } => {
Ok(SchemaType::Record { attrs: {
pairs.iter().map(|(k, v)| {
let attr_type = self.type_of_rexpr(
BorrowedRestrictedExpr::new_unchecked(v), // assuming the invariant holds for the record as a whole, it will also hold for each attribute value
ctx.clone(),
)?;
// we can't know if the attribute is required or optional,
// but marking it optional is more flexible -- allows the
// attribute type to `is_consistent_with()` more types
Ok((k.clone(), AttributeType::optional(attr_type)))
}).collect::<Result<HashMap<_,_>, JsonDeserializationError>>()?
}})
}
ExprKind::ExtensionFunctionApp { fn_name, .. } => {
let efunc = self.extensions.func(fn_name)?;
Ok(efunc.return_type().cloned().ok_or_else(|| ExtensionsError::HasNoType {
name: efunc.name().clone()
})?)
}
// PANIC SAFETY. Unreachable by invariant on restricted expressions
#[allow(clippy::unreachable)]
expr => unreachable!("internal invariant violation: BorrowedRestrictedExpr somehow contained this expr case: {expr:?}"),
}
}
}
/// Serde JSON format for Cedar values where we know we're expecting an entity
/// reference
#[derive(Debug, Clone, PartialEq, Eq, Deserialize, Serialize)]
#[serde(untagged)]
pub enum EntityUidJSON {
/// Explicit `__expr` escape; see notes on JSONValue::ExprEscape.
///
/// Deprecated since the 1.2 release; use
/// `{ "__entity": { "type": "...", "id": "..." } }` instead.
ExplicitExprEscape {
/// String to interpret as a (restricted) Cedar expression.
/// In this case, it must evaluate to an entity reference.
__expr: SmolStr,
},
/// Explicit `__entity` escape; see notes on JSONValue::EntityEscape
ExplicitEntityEscape {
/// JSON object containing the entity type and ID
__entity: TypeAndId,
},
/// Implicit `__expr` escape, in which case we'll just see a JSON string.
///
/// Deprecated since the 1.2 release; use
/// `{ "type": "...", "id": "..." }` instead.
ImplicitExprEscape(SmolStr),
/// Implicit `__entity` escape, in which case we'll see just the TypeAndId
/// structure
ImplicitEntityEscape(TypeAndId),
}
/// Serde JSON format for Cedar values where we know we're expecting an
/// extension value
#[derive(Debug, Clone, PartialEq, Eq, Deserialize, Serialize)]
#[serde(untagged)]
pub enum ExtnValueJSON {
/// Explicit `__expr` escape; see notes on JSONValue::ExprEscape.
///
/// Deprecated since the 1.2 release; use
/// `{ "__extn": { "fn": "...", "arg": "..." } }` instead.
ExplicitExprEscape {
/// String to interpret as a (restricted) Cedar expression.
/// In this case, it must evaluate to an extension value.
__expr: SmolStr,
},
/// Explicit `__extn` escape; see notes on JSONValue::ExtnEscape
ExplicitExtnEscape {
/// JSON object containing the extension-constructor call
__extn: FnAndArg,
},
/// Implicit `__extn` escape, in which case we'll just see the `FnAndArg`
/// directly
ImplicitExtnEscape(FnAndArg),
/// Implicit `__extn` escape and constructor. Constructor is implicitly
/// selected based on the argument type and the expected type.
//
// This is listed last so that it has lowest priority when deserializing.
// If one of the above forms fits, we use that.
ImplicitConstructor(JSONValue),
}
impl EntityUidJSON {
/// Construct an `EntityUidJSON` from entity type name and EID.
///
/// This will use the `ImplicitEntityEscape` form, if it matters.
pub fn new(entity_type: impl Into<SmolStr>, id: impl Into<SmolStr>) -> Self {
Self::ImplicitEntityEscape(TypeAndId {
entity_type: entity_type.into(),
id: id.into(),
})
}
/// Convert this `EntityUidJSON` into an `EntityUID`
pub fn into_euid(
self,
ctx: impl Fn() -> JsonDeserializationErrorContext,
) -> Result<EntityUID, JsonDeserializationError> {
let is_implicit_expr = matches!(self, Self::ImplicitExprEscape(_));
match self {
Self::ExplicitExprEscape { __expr } | Self::ImplicitExprEscape(__expr) => {
// reuse the same logic that parses JSONValue
let jvalue = JSONValue::ExprEscape {
__expr: __expr.clone(),
};
let expr = jvalue.into_expr().map_err(|e| {
if is_implicit_expr {
// in this case, the user provided a string that wasn't
// an appropriate entity reference.
// Perhaps they didn't realize they needed to provide an
// entity reference at all, or perhaps they just had an
// entity syntax error.
// We'll give them the `ExpectedLiteralEntityRef` error
// message instead of the `ExprParseError` error message,
// as it's likely to be more helpful in my opinion
// PANIC SAFETY: Every `String` can be turned into a restricted expression
#[allow(clippy::unwrap_used)]
JsonDeserializationError::ExpectedLiteralEntityRef {
ctx: Box::new(ctx()),
got: Box::new(JSONValue::String(__expr).into_expr().unwrap().into()),
}
} else {
e
}
})?;
match expr.expr_kind() {
ExprKind::Lit(Literal::EntityUID(euid)) => Ok((**euid).clone()),
_ => Err(JsonDeserializationError::ExpectedLiteralEntityRef {
ctx: Box::new(ctx()),
got: Box::new(expr.clone().into()),
}),
}
}
Self::ExplicitEntityEscape { __entity } | Self::ImplicitEntityEscape(__entity) => {
// reuse the same logic that parses JSONValue
let jvalue = JSONValue::EntityEscape { __entity };
let expr = jvalue.into_expr()?;
match expr.expr_kind() {
ExprKind::Lit(Literal::EntityUID(euid)) => Ok((**euid).clone()),
_ => Err(JsonDeserializationError::ExpectedLiteralEntityRef {
ctx: Box::new(ctx()),
got: Box::new(expr.clone().into()),
}),
}
}
}
}
}
/// Convert an EntityUID to EntityUidJSON, using the ExplicitEntityEscape option
impl From<EntityUID> for EntityUidJSON {
fn from(uid: EntityUID) -> EntityUidJSON {
EntityUidJSON::ExplicitEntityEscape {
__entity: uid.into(),
}
}
}
/// Convert an EntityUID to EntityUidJSON, using the ExplicitEntityEscape option
impl From<&EntityUID> for EntityUidJSON {
fn from(uid: &EntityUID) -> EntityUidJSON {
EntityUidJSON::ExplicitEntityEscape {
__entity: uid.into(),
}
}
}