cedar_policy_core/ast/
restricted_expr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
/*
 * Copyright Cedar Contributors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

use super::{
    EntityUID, Expr, ExprKind, ExpressionConstructionError, Literal, Name, PartialValue, Type,
    Unknown, Value, ValueKind,
};
use crate::entities::json::err::JsonSerializationError;
use crate::extensions::Extensions;
use crate::parser::err::ParseErrors;
use crate::parser::{self, Loc};
use miette::Diagnostic;
use serde::{Deserialize, Serialize};
use smol_str::{SmolStr, ToSmolStr};
use std::hash::{Hash, Hasher};
use std::ops::Deref;
use std::sync::Arc;
use thiserror::Error;

/// A few places in Core use these "restricted expressions" (for lack of a
/// better term) which are in some sense the minimal subset of `Expr` required
/// to express all possible `Value`s.
///
/// Specifically, "restricted" expressions are
/// defined as expressions containing only the following:
///   - bool, int, and string literals
///   - literal EntityUIDs such as User::"alice"
///   - extension function calls, where the arguments must be other things
///       on this list
///   - set and record literals, where the values must be other things on
///       this list
///
/// That means the following are not allowed in "restricted" expressions:
///   - `principal`, `action`, `resource`, `context`
///   - builtin operators and functions, including `.`, `in`, `has`, `like`,
///       `.contains()`
///   - if-then-else expressions
///
/// These restrictions represent the expressions that are allowed to appear as
/// attribute values in `Slice` and `Context`.
#[derive(Deserialize, Serialize, Hash, Debug, Clone, PartialEq, Eq)]
#[serde(transparent)]
pub struct RestrictedExpr(Expr);

impl RestrictedExpr {
    /// Create a new `RestrictedExpr` from an `Expr`.
    ///
    /// This function is "safe" in the sense that it will verify that the
    /// provided `expr` does indeed qualify as a "restricted" expression,
    /// returning an error if not.
    ///
    /// Note this check requires recursively walking the AST. For a version of
    /// this function that doesn't perform this check, see `new_unchecked()`
    /// below.
    pub fn new(expr: Expr) -> Result<Self, RestrictedExpressionError> {
        is_restricted(&expr)?;
        Ok(Self(expr))
    }

    /// Create a new `RestrictedExpr` from an `Expr`, where the caller is
    /// responsible for ensuring that the `Expr` is a valid "restricted
    /// expression". If it is not, internal invariants will be violated, which
    /// may lead to other errors later, panics, or even incorrect results.
    ///
    /// For a "safer" version of this function that returns an error for invalid
    /// inputs, see `new()` above.
    pub fn new_unchecked(expr: Expr) -> Self {
        // in debug builds, this does the check anyway, panicking if it fails
        if cfg!(debug_assertions) {
            // PANIC SAFETY: We're in debug mode and panicking intentionally
            #[allow(clippy::unwrap_used)]
            Self::new(expr).unwrap()
        } else {
            Self(expr)
        }
    }

    /// Return the `RestrictedExpr`, but with the new `source_loc` (or `None`).
    pub fn with_maybe_source_loc(self, source_loc: Option<Loc>) -> Self {
        Self(self.0.with_maybe_source_loc(source_loc))
    }

    /// Create a `RestrictedExpr` that's just a single `Literal`.
    ///
    /// Note that you can pass this a `Literal`, an `Integer`, a `String`, etc.
    pub fn val(v: impl Into<Literal>) -> Self {
        // All literals are valid restricted-exprs
        Self::new_unchecked(Expr::val(v))
    }

    /// Create a `RestrictedExpr` that's just a single `Unknown`.
    pub fn unknown(u: Unknown) -> Self {
        // All unknowns are valid restricted-exprs
        Self::new_unchecked(Expr::unknown(u))
    }

    /// Create a `RestrictedExpr` which evaluates to a Set of the given `RestrictedExpr`s
    pub fn set(exprs: impl IntoIterator<Item = RestrictedExpr>) -> Self {
        // Set expressions are valid restricted-exprs if their elements are; and
        // we know the elements are because we require `RestrictedExpr`s in the
        // parameter
        Self::new_unchecked(Expr::set(exprs.into_iter().map(Into::into)))
    }

    /// Create a `RestrictedExpr` which evaluates to a Record with the given
    /// (key, value) pairs.
    ///
    /// Throws an error if any key occurs two or more times.
    pub fn record(
        pairs: impl IntoIterator<Item = (SmolStr, RestrictedExpr)>,
    ) -> Result<Self, ExpressionConstructionError> {
        // Record expressions are valid restricted-exprs if their elements are;
        // and we know the elements are because we require `RestrictedExpr`s in
        // the parameter
        Ok(Self::new_unchecked(Expr::record(
            pairs.into_iter().map(|(k, v)| (k, v.into())),
        )?))
    }

    /// Create a `RestrictedExpr` which calls the given extension function
    pub fn call_extension_fn(
        function_name: Name,
        args: impl IntoIterator<Item = RestrictedExpr>,
    ) -> Self {
        // Extension-function calls are valid restricted-exprs if their
        // arguments are; and we know the arguments are because we require
        // `RestrictedExpr`s in the parameter
        Self::new_unchecked(Expr::call_extension_fn(
            function_name,
            args.into_iter().map(Into::into).collect(),
        ))
    }

    /// Write a RestrictedExpr in "natural JSON" format.
    ///
    /// Used to output the context as a map from Strings to JSON Values
    pub fn to_natural_json(&self) -> Result<serde_json::Value, JsonSerializationError> {
        self.as_borrowed().to_natural_json()
    }

    /// Get the `bool` value of this `RestrictedExpr` if it's a boolean, or
    /// `None` if it is not a boolean
    pub fn as_bool(&self) -> Option<bool> {
        // the only way a `RestrictedExpr` can be a boolean is if it's a literal
        match self.expr_kind() {
            ExprKind::Lit(Literal::Bool(b)) => Some(*b),
            _ => None,
        }
    }

    /// Get the `i64` value of this `RestrictedExpr` if it's a long, or `None`
    /// if it is not a long
    pub fn as_long(&self) -> Option<i64> {
        // the only way a `RestrictedExpr` can be a long is if it's a literal
        match self.expr_kind() {
            ExprKind::Lit(Literal::Long(i)) => Some(*i),
            _ => None,
        }
    }

    /// Get the `SmolStr` value of this `RestrictedExpr` if it's a string, or
    /// `None` if it is not a string
    pub fn as_string(&self) -> Option<&SmolStr> {
        // the only way a `RestrictedExpr` can be a string is if it's a literal
        match self.expr_kind() {
            ExprKind::Lit(Literal::String(s)) => Some(s),
            _ => None,
        }
    }

    /// Get the `EntityUID` value of this `RestrictedExpr` if it's an entity
    /// reference, or `None` if it is not an entity reference
    pub fn as_euid(&self) -> Option<&EntityUID> {
        // the only way a `RestrictedExpr` can be an entity reference is if it's
        // a literal
        match self.expr_kind() {
            ExprKind::Lit(Literal::EntityUID(e)) => Some(e),
            _ => None,
        }
    }

    /// Get `Unknown` value of this `RestrictedExpr` if it's an `Unknown`, or
    /// `None` if it is not an `Unknown`
    pub fn as_unknown(&self) -> Option<&Unknown> {
        match self.expr_kind() {
            ExprKind::Unknown(u) => Some(u),
            _ => None,
        }
    }

    /// Iterate over the elements of the set if this `RestrictedExpr` is a set,
    /// or `None` if it is not a set
    pub fn as_set_elements(&self) -> Option<impl Iterator<Item = BorrowedRestrictedExpr<'_>>> {
        match self.expr_kind() {
            ExprKind::Set(set) => Some(set.iter().map(BorrowedRestrictedExpr::new_unchecked)), // since the RestrictedExpr invariant holds for the input set, it will hold for each element as well
            _ => None,
        }
    }

    /// Iterate over the (key, value) pairs of the record if this
    /// `RestrictedExpr` is a record, or `None` if it is not a record
    pub fn as_record_pairs(
        &self,
    ) -> Option<impl Iterator<Item = (&SmolStr, BorrowedRestrictedExpr<'_>)>> {
        match self.expr_kind() {
            ExprKind::Record(map) => Some(
                map.iter()
                    .map(|(k, v)| (k, BorrowedRestrictedExpr::new_unchecked(v))),
            ), // since the RestrictedExpr invariant holds for the input record, it will hold for each attr value as well
            _ => None,
        }
    }

    /// Get the name and args of the called extension function if this
    /// `RestrictedExpr` is an extension function call, or `None` if it is not
    /// an extension function call
    pub fn as_extn_fn_call(
        &self,
    ) -> Option<(&Name, impl Iterator<Item = BorrowedRestrictedExpr<'_>>)> {
        match self.expr_kind() {
            ExprKind::ExtensionFunctionApp { fn_name, args } => Some((
                fn_name,
                args.iter().map(BorrowedRestrictedExpr::new_unchecked),
            )), // since the RestrictedExpr invariant holds for the input call, it will hold for each argument as well
            _ => None,
        }
    }
}

impl From<Value> for RestrictedExpr {
    fn from(value: Value) -> RestrictedExpr {
        RestrictedExpr::from(value.value).with_maybe_source_loc(value.loc)
    }
}

impl From<ValueKind> for RestrictedExpr {
    fn from(value: ValueKind) -> RestrictedExpr {
        match value {
            ValueKind::Lit(lit) => RestrictedExpr::val(lit),
            ValueKind::Set(set) => {
                RestrictedExpr::set(set.iter().map(|val| RestrictedExpr::from(val.clone())))
            }
            // PANIC SAFETY: cannot have duplicate key because the input was already a BTreeMap
            #[allow(clippy::expect_used)]
            ValueKind::Record(record) => RestrictedExpr::record(
                Arc::unwrap_or_clone(record)
                    .into_iter()
                    .map(|(k, v)| (k, RestrictedExpr::from(v))),
            )
            .expect("can't have duplicate keys, because the input `map` was already a BTreeMap"),
            ValueKind::ExtensionValue(ev) => {
                let ev = Arc::unwrap_or_clone(ev);
                RestrictedExpr::call_extension_fn(ev.constructor, ev.args)
            }
        }
    }
}

impl TryFrom<PartialValue> for RestrictedExpr {
    type Error = PartialValueToRestrictedExprError;
    fn try_from(pvalue: PartialValue) -> Result<RestrictedExpr, PartialValueToRestrictedExprError> {
        match pvalue {
            PartialValue::Value(v) => Ok(RestrictedExpr::from(v)),
            PartialValue::Residual(expr) => match RestrictedExpr::new(expr) {
                Ok(e) => Ok(e),
                Err(RestrictedExpressionError::InvalidRestrictedExpression(
                    restricted_expr_errors::InvalidRestrictedExpressionError { expr, .. },
                )) => Err(PartialValueToRestrictedExprError::NontrivialResidual {
                    residual: Box::new(expr),
                }),
            },
        }
    }
}

/// Errors when converting `PartialValue` to `RestrictedExpr`
#[derive(Debug, PartialEq, Diagnostic, Error)]
pub enum PartialValueToRestrictedExprError {
    /// The `PartialValue` contains a nontrivial residual that isn't a valid `RestrictedExpr`
    #[error("residual is not a valid restricted expression: `{residual}`")]
    NontrivialResidual {
        /// Residual that isn't a valid `RestrictedExpr`
        residual: Box<Expr>,
    },
}

impl std::str::FromStr for RestrictedExpr {
    type Err = RestrictedExpressionParseError;

    fn from_str(s: &str) -> Result<RestrictedExpr, Self::Err> {
        parser::parse_restrictedexpr(s)
    }
}

/// While `RestrictedExpr` wraps an _owned_ `Expr`, `BorrowedRestrictedExpr`
/// wraps a _borrowed_ `Expr`, with the same invariants.
///
/// We derive `Copy` for this type because it's just a single reference, and
/// `&T` is `Copy` for all `T`.
#[derive(Serialize, Hash, Debug, Clone, PartialEq, Eq, Copy)]
pub struct BorrowedRestrictedExpr<'a>(&'a Expr);

impl<'a> BorrowedRestrictedExpr<'a> {
    /// Create a new `BorrowedRestrictedExpr` from an `&Expr`.
    ///
    /// This function is "safe" in the sense that it will verify that the
    /// provided `expr` does indeed qualify as a "restricted" expression,
    /// returning an error if not.
    ///
    /// Note this check requires recursively walking the AST. For a version of
    /// this function that doesn't perform this check, see `new_unchecked()`
    /// below.
    pub fn new(expr: &'a Expr) -> Result<Self, RestrictedExpressionError> {
        is_restricted(expr)?;
        Ok(Self(expr))
    }

    /// Create a new `BorrowedRestrictedExpr` from an `&Expr`, where the caller
    /// is responsible for ensuring that the `Expr` is a valid "restricted
    /// expression". If it is not, internal invariants will be violated, which
    /// may lead to other errors later, panics, or even incorrect results.
    ///
    /// For a "safer" version of this function that returns an error for invalid
    /// inputs, see `new()` above.
    pub fn new_unchecked(expr: &'a Expr) -> Self {
        // in debug builds, this does the check anyway, panicking if it fails
        if cfg!(debug_assertions) {
            // PANIC SAFETY: We're in debug mode and panicking intentionally
            #[allow(clippy::unwrap_used)]
            Self::new(expr).unwrap()
        } else {
            Self(expr)
        }
    }

    /// Write a BorrowedRestrictedExpr in "natural JSON" format.
    ///
    /// Used to output the context as a map from Strings to JSON Values
    pub fn to_natural_json(self) -> Result<serde_json::Value, JsonSerializationError> {
        Ok(serde_json::to_value(
            crate::entities::json::CedarValueJson::from_expr(self)?,
        )?)
    }

    /// Convert `BorrowedRestrictedExpr` to `RestrictedExpr`.
    /// This has approximately the cost of cloning the `Expr`.
    pub fn to_owned(self) -> RestrictedExpr {
        RestrictedExpr::new_unchecked(self.0.clone())
    }

    /// Get the `bool` value of this `RestrictedExpr` if it's a boolean, or
    /// `None` if it is not a boolean
    pub fn as_bool(&self) -> Option<bool> {
        // the only way a `RestrictedExpr` can be a boolean is if it's a literal
        match self.expr_kind() {
            ExprKind::Lit(Literal::Bool(b)) => Some(*b),
            _ => None,
        }
    }

    /// Get the `i64` value of this `RestrictedExpr` if it's a long, or `None`
    /// if it is not a long
    pub fn as_long(&self) -> Option<i64> {
        // the only way a `RestrictedExpr` can be a long is if it's a literal
        match self.expr_kind() {
            ExprKind::Lit(Literal::Long(i)) => Some(*i),
            _ => None,
        }
    }

    /// Get the `SmolStr` value of this `RestrictedExpr` if it's a string, or
    /// `None` if it is not a string
    pub fn as_string(&self) -> Option<&SmolStr> {
        // the only way a `RestrictedExpr` can be a string is if it's a literal
        match self.expr_kind() {
            ExprKind::Lit(Literal::String(s)) => Some(s),
            _ => None,
        }
    }

    /// Get the `EntityUID` value of this `RestrictedExpr` if it's an entity
    /// reference, or `None` if it is not an entity reference
    pub fn as_euid(&self) -> Option<&EntityUID> {
        // the only way a `RestrictedExpr` can be an entity reference is if it's
        // a literal
        match self.expr_kind() {
            ExprKind::Lit(Literal::EntityUID(e)) => Some(e),
            _ => None,
        }
    }

    /// Get `Unknown` value of this `RestrictedExpr` if it's an `Unknown`, or
    /// `None` if it is not an `Unknown`
    pub fn as_unknown(&self) -> Option<&Unknown> {
        match self.expr_kind() {
            ExprKind::Unknown(u) => Some(u),
            _ => None,
        }
    }

    /// Iterate over the elements of the set if this `RestrictedExpr` is a set,
    /// or `None` if it is not a set
    pub fn as_set_elements(&self) -> Option<impl Iterator<Item = BorrowedRestrictedExpr<'_>>> {
        match self.expr_kind() {
            ExprKind::Set(set) => Some(set.iter().map(BorrowedRestrictedExpr::new_unchecked)), // since the RestrictedExpr invariant holds for the input set, it will hold for each element as well
            _ => None,
        }
    }

    /// Iterate over the (key, value) pairs of the record if this
    /// `RestrictedExpr` is a record, or `None` if it is not a record
    pub fn as_record_pairs(
        &self,
    ) -> Option<impl Iterator<Item = (&'_ SmolStr, BorrowedRestrictedExpr<'_>)>> {
        match self.expr_kind() {
            ExprKind::Record(map) => Some(
                map.iter()
                    .map(|(k, v)| (k, BorrowedRestrictedExpr::new_unchecked(v))),
            ), // since the RestrictedExpr invariant holds for the input record, it will hold for each attr value as well
            _ => None,
        }
    }

    /// Get the name and args of the called extension function if this
    /// `RestrictedExpr` is an extension function call, or `None` if it is not
    /// an extension function call
    pub fn as_extn_fn_call(
        &self,
    ) -> Option<(&Name, impl Iterator<Item = BorrowedRestrictedExpr<'_>>)> {
        match self.expr_kind() {
            ExprKind::ExtensionFunctionApp { fn_name, args } => Some((
                fn_name,
                args.iter().map(BorrowedRestrictedExpr::new_unchecked),
            )), // since the RestrictedExpr invariant holds for the input call, it will hold for each argument as well
            _ => None,
        }
    }

    /// Try to compute the runtime type of this expression. See
    /// [`Expr::try_type_of`] for exactly what this computes.
    ///
    /// On a restricted expression, there are fewer cases where we might fail to
    /// compute the type, but there are still `unknown`s and extension function
    /// calls which may cause this function to return `None` .
    pub fn try_type_of(&self, extensions: &Extensions<'_>) -> Option<Type> {
        self.0.try_type_of(extensions)
    }
}

/// Helper function: does the given `Expr` qualify as a "restricted" expression.
///
/// Returns `Ok(())` if yes, or a `RestrictedExpressionError` if no.
fn is_restricted(expr: &Expr) -> Result<(), RestrictedExpressionError> {
    match expr.expr_kind() {
        ExprKind::Lit(_) => Ok(()),
        ExprKind::Unknown(_) => Ok(()),
        ExprKind::Var(_) => Err(restricted_expr_errors::InvalidRestrictedExpressionError {
            feature: "variables".into(),
            expr: expr.clone(),
        }
        .into()),
        ExprKind::Slot(_) => Err(restricted_expr_errors::InvalidRestrictedExpressionError {
            feature: "template slots".into(),
            expr: expr.clone(),
        }
        .into()),
        ExprKind::If { .. } => Err(restricted_expr_errors::InvalidRestrictedExpressionError {
            feature: "if-then-else".into(),
            expr: expr.clone(),
        }
        .into()),
        ExprKind::And { .. } => Err(restricted_expr_errors::InvalidRestrictedExpressionError {
            feature: "&&".into(),
            expr: expr.clone(),
        }
        .into()),
        ExprKind::Or { .. } => Err(restricted_expr_errors::InvalidRestrictedExpressionError {
            feature: "||".into(),
            expr: expr.clone(),
        }
        .into()),
        ExprKind::UnaryApp { op, .. } => {
            Err(restricted_expr_errors::InvalidRestrictedExpressionError {
                feature: op.to_smolstr(),
                expr: expr.clone(),
            }
            .into())
        }
        ExprKind::BinaryApp { op, .. } => {
            Err(restricted_expr_errors::InvalidRestrictedExpressionError {
                feature: op.to_smolstr(),
                expr: expr.clone(),
            }
            .into())
        }
        ExprKind::GetAttr { .. } => Err(restricted_expr_errors::InvalidRestrictedExpressionError {
            feature: "attribute accesses".into(),
            expr: expr.clone(),
        }
        .into()),
        ExprKind::HasAttr { .. } => Err(restricted_expr_errors::InvalidRestrictedExpressionError {
            feature: "'has'".into(),
            expr: expr.clone(),
        }
        .into()),
        ExprKind::Like { .. } => Err(restricted_expr_errors::InvalidRestrictedExpressionError {
            feature: "'like'".into(),
            expr: expr.clone(),
        }
        .into()),
        ExprKind::Is { .. } => Err(restricted_expr_errors::InvalidRestrictedExpressionError {
            feature: "'is'".into(),
            expr: expr.clone(),
        }
        .into()),
        ExprKind::ExtensionFunctionApp { args, .. } => args.iter().try_for_each(is_restricted),
        ExprKind::Set(exprs) => exprs.iter().try_for_each(is_restricted),
        ExprKind::Record(map) => map.values().try_for_each(is_restricted),
    }
}

// converting into Expr is always safe; restricted exprs are always valid Exprs
impl From<RestrictedExpr> for Expr {
    fn from(r: RestrictedExpr) -> Expr {
        r.0
    }
}

impl AsRef<Expr> for RestrictedExpr {
    fn as_ref(&self) -> &Expr {
        &self.0
    }
}

impl Deref for RestrictedExpr {
    type Target = Expr;
    fn deref(&self) -> &Expr {
        self.as_ref()
    }
}

impl std::fmt::Display for RestrictedExpr {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", &self.0)
    }
}

// converting into Expr is always safe; restricted exprs are always valid Exprs
impl<'a> From<BorrowedRestrictedExpr<'a>> for &'a Expr {
    fn from(r: BorrowedRestrictedExpr<'a>) -> &'a Expr {
        r.0
    }
}

impl<'a> AsRef<Expr> for BorrowedRestrictedExpr<'a> {
    fn as_ref(&self) -> &'a Expr {
        self.0
    }
}

impl RestrictedExpr {
    /// Turn an `&RestrictedExpr` into a `BorrowedRestrictedExpr`
    pub fn as_borrowed(&self) -> BorrowedRestrictedExpr<'_> {
        BorrowedRestrictedExpr::new_unchecked(self.as_ref())
    }
}

impl<'a> Deref for BorrowedRestrictedExpr<'a> {
    type Target = Expr;
    fn deref(&self) -> &'a Expr {
        self.0
    }
}

impl<'a> std::fmt::Display for BorrowedRestrictedExpr<'a> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", &self.0)
    }
}

/// Like `ExprShapeOnly`, but for restricted expressions.
///
/// A newtype wrapper around (borrowed) restricted expressions that provides
/// `Eq` and `Hash` implementations that ignore any source information or other
/// generic data used to annotate the expression.
#[derive(Eq, Debug, Clone)]
pub struct RestrictedExprShapeOnly<'a>(BorrowedRestrictedExpr<'a>);

impl<'a> RestrictedExprShapeOnly<'a> {
    /// Construct a `RestrictedExprShapeOnly` from a `BorrowedRestrictedExpr`.
    /// The `BorrowedRestrictedExpr` is not modified, but any comparisons on the
    /// resulting `RestrictedExprShapeOnly` will ignore source information and
    /// generic data.
    pub fn new(e: BorrowedRestrictedExpr<'a>) -> RestrictedExprShapeOnly<'a> {
        RestrictedExprShapeOnly(e)
    }
}

impl<'a> PartialEq for RestrictedExprShapeOnly<'a> {
    fn eq(&self, other: &Self) -> bool {
        self.0.eq_shape(&other.0)
    }
}

impl<'a> Hash for RestrictedExprShapeOnly<'a> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.hash_shape(state);
    }
}

/// Error when constructing a restricted expression from unrestricted
/// expression
//
// CAUTION: this type is publicly exported in `cedar-policy`.
// Don't make fields `pub`, don't make breaking changes, and use caution
// when adding public methods.
#[derive(Debug, Clone, PartialEq, Eq, Error, Diagnostic)]
pub enum RestrictedExpressionError {
    /// An expression was expected to be a "restricted" expression, but contained
    /// a feature that is not allowed in restricted expressions.
    #[error(transparent)]
    #[diagnostic(transparent)]
    InvalidRestrictedExpression(#[from] restricted_expr_errors::InvalidRestrictedExpressionError),
}

/// Error subtypes for [`RestrictedExpressionError`]
pub mod restricted_expr_errors {
    use super::Expr;
    use crate::impl_diagnostic_from_expr_field;
    use miette::Diagnostic;
    use smol_str::SmolStr;
    use thiserror::Error;

    /// An expression was expected to be a "restricted" expression, but contained
    /// a feature that is not allowed in restricted expressions.
    //
    // CAUTION: this type is publicly exported in `cedar-policy`.
    // Don't make fields `pub`, don't make breaking changes, and use caution
    // when adding public methods.
    #[derive(Debug, Clone, PartialEq, Eq, Error)]
    #[error("not allowed to use {feature} in a restricted expression: `{expr}`")]
    pub struct InvalidRestrictedExpressionError {
        /// String description of what disallowed feature appeared in the expression
        pub(crate) feature: SmolStr,
        /// the (sub-)expression that uses the disallowed feature. This may be a
        /// sub-expression of a larger expression.
        pub(crate) expr: Expr,
    }

    // custom impl of `Diagnostic`: take source location from the `expr` field
    impl Diagnostic for InvalidRestrictedExpressionError {
        impl_diagnostic_from_expr_field!(expr);
    }
}

/// Errors possible from `RestrictedExpr::from_str()`
//
// This is NOT a publicly exported error type.
#[derive(Debug, Clone, PartialEq, Eq, Diagnostic, Error)]
pub enum RestrictedExpressionParseError {
    /// Failed to parse the expression
    #[error(transparent)]
    #[diagnostic(transparent)]
    Parse(#[from] ParseErrors),
    /// Parsed successfully as an expression, but failed to construct a
    /// restricted expression, for the reason indicated in the underlying error
    #[error(transparent)]
    #[diagnostic(transparent)]
    InvalidRestrictedExpression(#[from] RestrictedExpressionError),
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::ast::expression_construction_errors;
    use crate::parser::err::{ParseError, ToASTError, ToASTErrorKind};
    use crate::parser::Loc;
    use std::str::FromStr;
    use std::sync::Arc;

    #[test]
    fn duplicate_key() {
        // duplicate key is an error when mapped to values of different types
        assert_eq!(
            RestrictedExpr::record([
                ("foo".into(), RestrictedExpr::val(37),),
                ("foo".into(), RestrictedExpr::val("hello"),),
            ]),
            Err(expression_construction_errors::DuplicateKeyError {
                key: "foo".into(),
                context: "in record literal",
            }
            .into())
        );

        // duplicate key is an error when mapped to different values of same type
        assert_eq!(
            RestrictedExpr::record([
                ("foo".into(), RestrictedExpr::val(37),),
                ("foo".into(), RestrictedExpr::val(101),),
            ]),
            Err(expression_construction_errors::DuplicateKeyError {
                key: "foo".into(),
                context: "in record literal",
            }
            .into())
        );

        // duplicate key is an error when mapped to the same value multiple times
        assert_eq!(
            RestrictedExpr::record([
                ("foo".into(), RestrictedExpr::val(37),),
                ("foo".into(), RestrictedExpr::val(37),),
            ]),
            Err(expression_construction_errors::DuplicateKeyError {
                key: "foo".into(),
                context: "in record literal",
            }
            .into())
        );

        // duplicate key is an error even when other keys appear in between
        assert_eq!(
            RestrictedExpr::record([
                ("bar".into(), RestrictedExpr::val(-3),),
                ("foo".into(), RestrictedExpr::val(37),),
                ("spam".into(), RestrictedExpr::val("eggs"),),
                ("foo".into(), RestrictedExpr::val(37),),
                ("eggs".into(), RestrictedExpr::val("spam"),),
            ]),
            Err(expression_construction_errors::DuplicateKeyError {
                key: "foo".into(),
                context: "in record literal",
            }
            .into())
        );

        // duplicate key is also an error when parsing from string
        let str = r#"{ foo: 37, bar: "hi", foo: 101 }"#;
        assert_eq!(
            RestrictedExpr::from_str(str),
            Err(RestrictedExpressionParseError::Parse(
                ParseErrors::singleton(ParseError::ToAST(ToASTError::new(
                    ToASTErrorKind::ExpressionConstructionError(
                        expression_construction_errors::DuplicateKeyError {
                            key: "foo".into(),
                            context: "in record literal",
                        }
                        .into()
                    ),
                    Loc::new(0..32, Arc::from(str))
                )))
            )),
        )
    }
}