cedar_policy_core/ast/
value.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
/*
 * Copyright Cedar Contributors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

use crate::ast::*;
use crate::parser::Loc;
use std::collections::{BTreeMap, BTreeSet, HashSet};
use std::sync::Arc;

use itertools::Itertools;
use miette::Diagnostic;
use serde::{Deserialize, Serialize};
use smol_str::SmolStr;
use thiserror::Error;

/// This describes all the values which could be the dynamic result of evaluating an `Expr`.
/// Cloning is O(1).
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(into = "Expr")]
#[serde(try_from = "Expr")]
pub struct Value {
    /// Underlying actual value
    pub value: ValueKind,
    /// Source location associated with the value, if any
    pub loc: Option<Loc>,
}

/// This describes all the values which could be the dynamic result of evaluating an `Expr`.
/// Cloning is O(1).
#[derive(Debug, Clone, PartialOrd, Ord, Serialize, Deserialize)]
#[serde(into = "Expr")]
#[serde(try_from = "Expr")]
pub enum ValueKind {
    /// anything that is a Literal can also be the dynamic result of evaluating an `Expr`
    Lit(Literal),
    /// Evaluating an `Expr` can result in a first-class set
    Set(Set),
    /// Evaluating an `Expr` can result in a first-class anonymous record (keyed on String)
    Record(Arc<BTreeMap<SmolStr, Value>>),
    /// Evaluating an `Expr` can result in an extension value
    ExtensionValue(Arc<ExtensionValueWithArgs>),
}

// Custom impl of `Ord`, ignoring the `Loc`s
impl Ord for Value {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.value.cmp(&other.value)
    }
}

impl PartialOrd<Value> for Value {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        // delegate to `Ord`
        Some(self.cmp(other))
    }
}

impl Value {
    /// Create a new empty set
    pub fn empty_set(loc: Option<Loc>) -> Self {
        Self {
            value: ValueKind::empty_set(),
            loc,
        }
    }

    /// Create a new empty record
    pub fn empty_record(loc: Option<Loc>) -> Self {
        Self {
            value: ValueKind::empty_record(),
            loc,
        }
    }

    /// Create a `Value` from anything that implements `Into<ValueKind>` and an
    /// optional source location
    pub fn new(value: impl Into<ValueKind>, loc: Option<Loc>) -> Self {
        Self {
            value: value.into(),
            loc,
        }
    }

    /// Create a set with the given `Value`s as elements
    pub fn set(vals: impl IntoIterator<Item = Value>, loc: Option<Loc>) -> Self {
        Self {
            value: ValueKind::set(vals),
            loc,
        }
    }

    /// Create a set with the given `Literal`s as elements
    ///
    /// the resulting `Value` will have the given `loc` attached, but its
    /// individual `Literal` elements will not have a source loc attached
    pub fn set_of_lits(lits: impl IntoIterator<Item = Literal>, loc: Option<Loc>) -> Self {
        Self {
            value: ValueKind::set_of_lits(lits),
            loc,
        }
    }

    /// Create a record with the given (key, value) pairs
    pub fn record<K: Into<SmolStr>, V: Into<Value>>(
        pairs: impl IntoIterator<Item = (K, V)>,
        loc: Option<Loc>,
    ) -> Self {
        Self {
            value: ValueKind::record(pairs),
            loc,
        }
    }

    /// Create a record with the given attributes/value mapping.
    pub fn record_arc(pairs: Arc<BTreeMap<SmolStr, Value>>, loc: Option<Loc>) -> Self {
        Self {
            value: ValueKind::record_arc(pairs),
            loc,
        }
    }

    /// Return the `Value`, but with the given `Loc` (or `None`)
    pub fn with_maybe_source_loc(self, loc: Option<Loc>) -> Self {
        Self { loc, ..self }
    }

    /// Get the `ValueKind` for this `Value`
    pub fn value_kind(&self) -> &ValueKind {
        &self.value
    }

    /// Get the `Loc` attached to this `Value`, if there is one
    pub fn source_loc(&self) -> Option<&Loc> {
        self.loc.as_ref()
    }

    /// If the value is a `Literal`, get a reference to the underlying `Literal`
    pub(crate) fn try_as_lit(&self) -> Option<&Literal> {
        self.value.try_as_lit()
    }

    /// The `PartialEq` and `Eq` implementations for `Value` ignore the source location.
    /// If you actually want to check that two values are equal _and_ have the
    /// same source location, you can use this.
    pub fn eq_and_same_source_loc(&self, other: &Self) -> bool {
        self == other && self.source_loc() == other.source_loc()
    }
}

impl ValueKind {
    /// Create a new empty set
    pub fn empty_set() -> Self {
        Self::Set(Set::empty())
    }

    /// Create a new empty record
    pub fn empty_record() -> Self {
        Self::Record(Arc::new(BTreeMap::new()))
    }

    /// Create a set with the given `Value`s as elements
    pub fn set(vals: impl IntoIterator<Item = Value>) -> Self {
        Self::Set(Set::new(vals))
    }

    /// Create a set with the given `Literal`s as elements
    pub fn set_of_lits(lits: impl IntoIterator<Item = Literal>) -> Self {
        Self::Set(Set::from_lits(lits))
    }

    /// Create a record with the given (key, value) pairs
    pub fn record<K: Into<SmolStr>, V: Into<Value>>(
        pairs: impl IntoIterator<Item = (K, V)>,
    ) -> Self {
        Self::Record(Arc::new(
            pairs
                .into_iter()
                .map(|(k, v)| (k.into(), v.into()))
                .collect(),
        ))
    }

    /// Create a record with the given attributes/value mapping.
    pub fn record_arc(pairs: Arc<BTreeMap<SmolStr, Value>>) -> Self {
        Self::Record(pairs)
    }

    /// If the value is a `Literal`, get a reference to the underlying `Literal`
    pub(crate) fn try_as_lit(&self) -> Option<&Literal> {
        match &self {
            Self::Lit(lit) => Some(lit),
            _ => None,
        }
    }
}

#[derive(Debug, Error)]
/// An error that can be thrown converting an expression to a value
pub enum NotValue {
    /// General error for non-values
    #[error("not a value")]
    NotValue {
        /// Source location info for the expr that wasn't a value
        loc: Option<Loc>,
    },
}

impl Diagnostic for NotValue {
    fn labels(&self) -> Option<Box<dyn Iterator<Item = miette::LabeledSpan> + '_>> {
        match self {
            Self::NotValue { loc } => loc.as_ref().map(|loc| {
                Box::new(std::iter::once(miette::LabeledSpan::underline(loc.span)))
                    as Box<dyn Iterator<Item = _>>
            }),
        }
    }

    fn source_code(&self) -> Option<&dyn miette::SourceCode> {
        match self {
            Self::NotValue { loc } => loc.as_ref().map(|loc| &loc.src as &dyn miette::SourceCode),
        }
    }
}

impl TryFrom<Expr> for Value {
    type Error = NotValue;

    fn try_from(expr: Expr) -> Result<Self, Self::Error> {
        let loc = expr.source_loc().cloned();
        Ok(Self {
            value: ValueKind::try_from(expr)?,
            loc,
        })
    }
}

impl TryFrom<Expr> for ValueKind {
    type Error = NotValue;

    fn try_from(expr: Expr) -> Result<Self, Self::Error> {
        let loc = expr.source_loc().cloned();
        match expr.into_expr_kind() {
            ExprKind::Lit(lit) => Ok(Self::Lit(lit)),
            ExprKind::Unknown(_) => Err(NotValue::NotValue { loc }),
            ExprKind::Var(_) => Err(NotValue::NotValue { loc }),
            ExprKind::Slot(_) => Err(NotValue::NotValue { loc }),
            ExprKind::If { .. } => Err(NotValue::NotValue { loc }),
            ExprKind::And { .. } => Err(NotValue::NotValue { loc }),
            ExprKind::Or { .. } => Err(NotValue::NotValue { loc }),
            ExprKind::UnaryApp { .. } => Err(NotValue::NotValue { loc }),
            ExprKind::BinaryApp { .. } => Err(NotValue::NotValue { loc }),
            ExprKind::ExtensionFunctionApp { .. } => Err(NotValue::NotValue { loc }),
            ExprKind::GetAttr { .. } => Err(NotValue::NotValue { loc }),
            ExprKind::HasAttr { .. } => Err(NotValue::NotValue { loc }),
            ExprKind::Like { .. } => Err(NotValue::NotValue { loc }),
            ExprKind::Is { .. } => Err(NotValue::NotValue { loc }),
            ExprKind::Set(members) => members
                .iter()
                .map(|e| Value::try_from(e.clone()))
                .collect::<Result<Set, _>>()
                .map(Self::Set),
            ExprKind::Record(map) => map
                .iter()
                .map(|(k, v)| Value::try_from(v.clone()).map(|v| (k.clone(), v)))
                .collect::<Result<BTreeMap<SmolStr, Value>, _>>()
                .map(|m| Self::Record(Arc::new(m))),
        }
    }
}

/// `Value`'s internal representation of a `Set`
#[derive(Debug, Clone)]
pub struct Set {
    /// the values in the set, stored in a `BTreeSet`
    pub authoritative: Arc<BTreeSet<Value>>,
    /// if possible, `HashSet<Literal>` representation of the set.
    /// (This is possible if all the elements are literals.)
    /// Some operations are much faster in this case.
    ///
    /// INVARIANT (FastRepr)
    /// we guarantee that if the elements are all
    /// literals, then this will be `Some`. (This allows us to further
    /// optimize e.g. equality checks between sets: for instance, we know
    /// that if one set has `fast` and another does not, the sets can't be
    /// equal.)
    pub fast: Option<Arc<HashSet<Literal>>>,
}

impl Set {
    /// Create an empty set
    pub fn empty() -> Self {
        Self {
            authoritative: Arc::new(BTreeSet::new()),
            fast: Some(Arc::new(HashSet::new())),
        }
    }

    /// Create a set with the given `Value`s as elements
    pub fn new(vals: impl IntoIterator<Item = Value>) -> Self {
        let authoritative: BTreeSet<Value> = vals.into_iter().collect();
        let fast: Option<Arc<HashSet<Literal>>> = authoritative
            .iter()
            .map(|v| v.try_as_lit().cloned())
            .collect::<Option<HashSet<Literal>>>()
            .map(Arc::new);
        Self {
            authoritative: Arc::new(authoritative),
            fast,
        }
    }

    /// Create a set with the given `Literal`s as elements
    pub fn from_lits(lits: impl IntoIterator<Item = Literal>) -> Self {
        let fast: HashSet<Literal> = lits.into_iter().collect();
        let authoritative: BTreeSet<Value> = fast
            .iter()
            .map(|lit| Value {
                value: ValueKind::Lit(lit.clone()),
                loc: None,
            })
            .collect();
        Self {
            authoritative: Arc::new(authoritative),
            fast: Some(Arc::new(fast)),
        }
    }

    /// Get the number of items in the set
    pub fn len(&self) -> usize {
        self.authoritative.len()
    }

    /// Convenience method to check if a set is empty
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Borrowed iterator
    pub fn iter(&self) -> impl Iterator<Item = &Value> {
        self.authoritative.iter()
    }
}

impl FromIterator<Value> for Set {
    fn from_iter<T: IntoIterator<Item = Value>>(iter: T) -> Self {
        let (literals, non_literals): (BTreeSet<_>, BTreeSet<_>) = iter
            .into_iter()
            .partition(|v| matches!(&v.value, ValueKind::Lit { .. }));

        if non_literals.is_empty() {
            Self::from_iter(literals.into_iter().map(|v| match v {
                Value {
                    value: ValueKind::Lit(lit),
                    ..
                } => lit,
                // PANIC SAFETY: This is unreachable as every item in `literals` matches ValueKind::Lit
                #[allow(clippy::unreachable)]
                _ => unreachable!(),
            }))
        } else {
            // INVARIANT (FastRepr)
            // There are non-literals, so we need `fast` should be `None`
            // We also need to add all the literals back into the set
            let mut all_items = non_literals;
            let mut literals = literals;
            all_items.append(&mut literals);
            Self {
                authoritative: Arc::new(all_items),
                fast: None,
            }
        }
    }
}

impl FromIterator<Literal> for Set {
    fn from_iter<T: IntoIterator<Item = Literal>>(iter: T) -> Self {
        // INVARIANT (FastRepr)
        // There are 0 non-literals, so we need to populate `fast`
        let fast: HashSet<Literal> = iter.into_iter().collect();
        Self {
            authoritative: Arc::new(fast.iter().cloned().map(Into::into).collect()),
            fast: Some(Arc::new(fast)),
        }
    }
}

// Trying to derive `PartialEq` for `ValueKind` fails with a compile error (at
// least, as of this writing) due to the `Arc<dyn>`, so we write out the
// implementation manually.
impl PartialEq for ValueKind {
    fn eq(&self, other: &Self) -> bool {
        match (self, other) {
            (ValueKind::Lit(lit1), ValueKind::Lit(lit2)) => lit1 == lit2,
            (ValueKind::Set(set1), ValueKind::Set(set2)) => set1 == set2,
            (ValueKind::Record(r1), ValueKind::Record(r2)) => r1 == r2,
            (ValueKind::ExtensionValue(ev1), ValueKind::ExtensionValue(ev2)) => ev1 == ev2,
            (_, _) => false, // values of different types are not equal
        }
    }
}

impl Eq for ValueKind {}

// The implementation of `PartialEq` for `Value` ignores the `Loc` of the values.
impl PartialEq for Value {
    fn eq(&self, other: &Value) -> bool {
        self.value == other.value
    }
}

impl Eq for Value {}

// PartialEq on Set is optimized to take advantage of the internal invariant documented on `Set`
impl PartialEq for Set {
    fn eq(&self, other: &Self) -> bool {
        match (self.fast.as_ref(), other.fast.as_ref()) {
            (Some(rc1), Some(rc2)) => rc1 == rc2,
            (Some(_), None) => false, // due to internal invariant documented on `Set`, we know that one set contains a non-literal and the other does not
            (None, Some(_)) => false, // due to internal invariant documented on `Set`, we know that one set contains a non-literal and the other does not
            (None, None) => self.authoritative.as_ref() == other.authoritative.as_ref(),
        }
    }
}

impl Eq for Set {}

// Ord on Set compares only the `authoritative` version; note that HashSet
// doesn't implement Ord
impl Ord for Set {
    fn cmp(&self, other: &Set) -> std::cmp::Ordering {
        self.authoritative
            .as_ref()
            .cmp(other.authoritative.as_ref())
    }
}

impl PartialOrd<Set> for Set {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        // delegate to `Ord`
        Some(self.cmp(other))
    }
}

impl StaticallyTyped for Value {
    fn type_of(&self) -> Type {
        self.value.type_of()
    }
}

impl StaticallyTyped for ValueKind {
    fn type_of(&self) -> Type {
        match self {
            Self::Lit(lit) => lit.type_of(),
            Self::Set(_) => Type::Set,
            Self::Record(_) => Type::Record,
            Self::ExtensionValue(ev) => ev.type_of(),
        }
    }
}

impl std::fmt::Display for Value {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.value)
    }
}

impl std::fmt::Display for ValueKind {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::Lit(lit) => write!(f, "{}", lit),
            Self::Set(Set {
                fast,
                authoritative,
            }) => {
                match authoritative.len() {
                    0 => write!(f, "[]"),
                    n @ 1..=5 => {
                        write!(f, "[")?;
                        if let Some(rc) = fast {
                            // sort the elements, because we want the Display output to be
                            // deterministic, particularly for tests which check equality
                            // of error messages
                            for (i, item) in rc.as_ref().iter().sorted_unstable().enumerate() {
                                write!(f, "{item}")?;
                                if i < n - 1 {
                                    write!(f, ", ")?;
                                }
                            }
                        } else {
                            // don't need to sort the elements in this case because BTreeSet iterates
                            // in a deterministic order already
                            for (i, item) in authoritative.as_ref().iter().enumerate() {
                                write!(f, "{item}")?;
                                if i < n - 1 {
                                    write!(f, ", ")?;
                                }
                            }
                        }
                        write!(f, "]")?;
                        Ok(())
                    }
                    n => write!(f, "<set with {} elements>", n),
                }
            }
            Self::Record(record) => {
                write!(f, "<first-class record with {} fields>", record.len())
            }
            Self::ExtensionValue(ev) => write!(f, "{}", ev),
        }
    }
}

/// Create a `Value` directly from a `Vec<Value>`, or `Vec<T> where T: Into<Value>`
/// (so `Vec<Integer>`, `Vec<String>`, etc)
///
/// This impl does not propagate source location; the resulting `Value` will
/// have no source location info attached
impl<T: Into<Value>> From<Vec<T>> for Value {
    fn from(v: Vec<T>) -> Self {
        Self::set(v.into_iter().map(Into::into), None)
    }
}

/// Create a `ValueKind` directly from a `Vec<Value>`, or `Vec<T> where T: Into<Value>`
/// (so `Vec<Integer>`, `Vec<String>`, etc)
impl<T: Into<Value>> From<Vec<T>> for ValueKind {
    fn from(v: Vec<T>) -> Self {
        Self::set(v.into_iter().map(Into::into))
    }
}

/// Create a `Value` directly from a `Literal`, or from anything that implements
/// `Into<Literal>` (so `Integer`, `&str`, `EntityUID`, etc)
///
/// This impl does not propagate source location; the resulting `Value` will
/// have no source location info attached
impl<T: Into<Literal>> From<T> for Value {
    fn from(lit: T) -> Self {
        Self {
            value: lit.into().into(),
            loc: None,
        }
    }
}

/// Create a `ValueKind` directly from a `Literal`, or from anything that implements
/// `Into<Literal>` (so `Integer`, `&str`, `EntityUID`, etc)
impl<T: Into<Literal>> From<T> for ValueKind {
    fn from(lit: T) -> Self {
        Self::Lit(lit.into())
    }
}

// PANIC SAFETY: Unit Test Code
#[allow(clippy::panic)]
#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn values() {
        assert_eq!(
            Value::from(true),
            Value {
                value: ValueKind::Lit(Literal::Bool(true)),
                loc: None,
            },
        );
        assert_eq!(
            Value::from(false),
            Value {
                value: ValueKind::Lit(Literal::Bool(false)),
                loc: None,
            },
        );
        assert_eq!(
            Value::from(23),
            Value {
                value: ValueKind::Lit(Literal::Long(23)),
                loc: None,
            },
        );
        assert_eq!(
            Value::from(-47),
            Value {
                value: ValueKind::Lit(Literal::Long(-47)),
                loc: None,
            },
        );
        assert_eq!(
            Value::from("hello"),
            Value {
                value: ValueKind::Lit(Literal::String("hello".into())),
                loc: None,
            },
        );
        assert_eq!(
            Value::from("hello".to_owned()),
            Value {
                value: ValueKind::Lit(Literal::String("hello".into())),
                loc: None,
            },
        );
        assert_eq!(
            Value::from(String::new()),
            Value {
                value: ValueKind::Lit(Literal::String(SmolStr::default())),
                loc: None,
            },
        );
        assert_eq!(
            Value::from(""),
            Value {
                value: ValueKind::Lit(Literal::String(SmolStr::default())),
                loc: None,
            },
        );
        assert_eq!(
            Value::from(vec![2, -3, 40]),
            Value::set(vec![Value::from(2), Value::from(-3), Value::from(40)], None),
        );
        assert_eq!(
            Value::from(vec![Literal::from(false), Literal::from("eggs")]),
            Value::set(vec![Value::from(false), Value::from("eggs")], None),
        );
        assert_eq!(
            Value::set(vec![Value::from(false), Value::from("eggs")], None),
            Value::set_of_lits(vec![Literal::from(false), Literal::from("eggs")], None),
        );

        let mut rec1: BTreeMap<SmolStr, Value> = BTreeMap::new();
        rec1.insert("ham".into(), 3.into());
        rec1.insert("eggs".into(), "hickory".into());
        assert_eq!(
            Value::record(rec1.clone(), None),
            Value {
                value: ValueKind::Record(Arc::new(rec1)),
                loc: None,
            },
        );

        let mut rec2: BTreeMap<SmolStr, Value> = BTreeMap::new();
        rec2.insert("hi".into(), "ham".into());
        rec2.insert("eggs".into(), "hickory".into());
        assert_eq!(
            Value::record(vec![("hi", "ham"), ("eggs", "hickory"),], None),
            Value {
                value: ValueKind::Record(Arc::new(rec2)),
                loc: None,
            },
        );

        assert_eq!(
            Value::from(EntityUID::with_eid("foo")),
            Value {
                value: ValueKind::Lit(Literal::EntityUID(Arc::new(EntityUID::with_eid("foo")))),
                loc: None,
            },
        );
    }

    #[test]
    fn value_types() {
        assert_eq!(Value::from(false).type_of(), Type::Bool);
        assert_eq!(Value::from(23).type_of(), Type::Long);
        assert_eq!(Value::from(-47).type_of(), Type::Long);
        assert_eq!(Value::from("hello").type_of(), Type::String);
        assert_eq!(Value::from(vec![2, -3, 40]).type_of(), Type::Set);
        assert_eq!(Value::empty_set(None).type_of(), Type::Set);
        assert_eq!(Value::empty_record(None).type_of(), Type::Record);
        assert_eq!(
            Value::record(vec![("hello", Value::from("ham"))], None).type_of(),
            Type::Record
        );
        assert_eq!(
            Value::from(EntityUID::with_eid("foo")).type_of(),
            Type::entity_type(
                Name::parse_unqualified_name("test_entity_type").expect("valid identifier")
            )
        );
    }

    #[test]
    fn test_set_is_empty_for_empty_set() {
        let set = Set {
            authoritative: Arc::new(BTreeSet::new()),
            fast: Some(Arc::new(HashSet::new())),
        };
        assert!(set.is_empty());
    }

    #[test]
    fn test_set_is_not_empty_for_set_with_values() {
        let set = Set {
            authoritative: Arc::new(BTreeSet::from([Value::from("abc")])),
            fast: None,
        };
        assert!(!set.is_empty());
    }

    #[test]
    fn pretty_printer() {
        assert_eq!(Value::from("abc").to_string(), r#""abc""#);
        assert_eq!(Value::from("\t").to_string(), r#""\t""#);
        assert_eq!(Value::from("🐈").to_string(), r#""🐈""#);
    }

    #[test]
    fn set_collect() {
        let v = vec![Value {
            value: 1.into(),
            loc: None,
        }];
        let set: Set = v.into_iter().collect();
        assert_eq!(set.len(), 1);
        let v2 = vec![Value {
            value: ValueKind::Set(set),
            loc: None,
        }];
        let set2: Set = v2.into_iter().collect();
        assert_eq!(set2.len(), 1);
    }
}