cedar_policy_core/
fuzzy_match.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*
 * Copyright Cedar Contributors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//! This module provides the fuzzy matching utility used to make suggestions
//! when encountering unknown values in entities, functions, etc.

/// Fuzzy string matching using the Levenshtein distance algorithm
pub fn fuzzy_search(key: &str, lst: &[impl AsRef<str>]) -> Option<String> {
    fuzzy_search_limited(key, lst, None)
}

/// Fuzzy string matching using the Levenshtein distance algorithm, with an
/// option to limit matching up to some distance.
pub fn fuzzy_search_limited(
    key: &str,
    lst: &[impl AsRef<str>],
    max_distance: Option<usize>,
) -> Option<String> {
    if key.is_empty() || lst.is_empty() {
        None
    } else {
        let t = lst.iter().fold((usize::MAX, ""), |acc, word| {
            let e = levenshtein_distance(key, word.as_ref());
            if e < acc.0 {
                (e, word.as_ref())
            } else {
                acc
            }
        });

        if let Some(threshold) = max_distance {
            (t.0 <= threshold).then_some(t.1.to_owned())
        } else {
            Some(t.1.to_owned())
        }
    }
}

fn levenshtein_distance(word1: &str, word2: &str) -> usize {
    let w1 = word1.chars().collect::<Vec<_>>();
    let w2 = word2.chars().collect::<Vec<_>>();
    let word1_length = w1.len() + 1;
    let word2_length = w2.len() + 1;
    let mut matrix = vec![vec![0; word1_length]; word2_length];

    // The access at 0 is safe because `word2_length` is at least 1.
    // The access at `i` is safe because it stops before `word1_length`.
    // PANIC SAFETY: See above.
    #[allow(clippy::indexing_slicing)]
    for i in 1..word1_length {
        matrix[0][i] = i;
    }
    // PANIC SAFETY: Similar to above, but fixing the column index instead.
    #[allow(clippy::indexing_slicing)]
    #[allow(clippy::needless_range_loop)]
    for j in 1..word2_length {
        matrix[j][0] = j;
    }

    // `i` and `j` start at 1, so the accesses at `i - 1` and `j - 1` are safe.
    // `i` and `j` stop before the length of the array in their respective
    // dimensions, so accesses at `i` and `j` are safe.
    // PANIC SAFETY: See above.
    #[allow(clippy::indexing_slicing)]
    for j in 1..word2_length {
        for i in 1..word1_length {
            let x: usize = if w1[i - 1] == w2[j - 1] {
                matrix[j - 1][i - 1]
            } else {
                1 + std::cmp::min(
                    std::cmp::min(matrix[j][i - 1], matrix[j - 1][i]),
                    matrix[j - 1][i - 1],
                )
            };
            matrix[j][i] = x;
        }
    }
    // PANIC SAFETY: Accesses at one less than length in both dimensions. The length in both dimensions is non-zero.
    #[allow(clippy::indexing_slicing)]
    matrix[word2_length - 1][word1_length - 1]
}

#[cfg(test)]
pub mod test {
    use super::*;

    ///the key differs by 1 letter from a word in words
    #[test]
    fn test_match1() {
        let word1 = "user::Alice";
        let words = vec!["User::Alice", "user::alice", "user", "alice"];
        let x = fuzzy_search(word1, &words);
        assert_eq!(x, Some("User::Alice".to_owned()));
    }

    ///the key differs by 1 letter from a word in words
    #[test]
    fn test_match2() {
        let word1 = "princpal";
        let words = vec![
            "principal",
            "Principal",
            "principality",
            "prince",
            "principle",
        ];
        let x = fuzzy_search(word1, &words);
        assert_eq!(x, Some("principal".to_owned()));
    }

    ///the word1 differs by two letters from a word in words
    #[test]
    fn test_match3() {
        let word1 = "prncpal";
        let words = vec![
            "principal",
            "Principal",
            "principality",
            "prince",
            "principle",
        ];
        let x = fuzzy_search(word1, &words);
        assert_eq!(x, Some("principal".to_owned()));
    }

    ///the word1 contains special characters like "
    #[test]
    fn test_match4() {
        let word1 = "user::\"Alice\"";
        let words = vec!["User::\"Alice\"", "user::\"alice\"", "user", "alice"];
        let x = fuzzy_search(word1, &words);
        assert_eq!(x, Some("User::\"Alice\"".to_owned()));
    }

    ///the word1 is the empty string
    #[test]
    fn test_match5() {
        let word1 = "";
        let words = vec!["User::\"Alice\"", "user::\"alice\"", "user", "alice"];
        let x = fuzzy_search(word1, &words);
        assert_eq!(x, None); //Some("user".to_owned()));
    }

    ///the words list contains duplicates
    #[test]
    fn test_match6() {
        let word1 = "prncpal";
        let words = vec![
            "principal",
            "Principal",
            "principality",
            "principal",
            "prince",
            "principle",
            "principal",
        ];
        let x = fuzzy_search(word1, &words);
        assert_eq!(x, Some("principal".to_owned()));
    }

    ///the word1 differs by a word in words only due to a special character (eg: ' instead of ")
    #[test]
    fn test_match7() {
        let word1 = "User::\"Alice\"";
        let words = vec!["User::\'Alice\'", "user::\"alice\"", "user", "alice"];
        let x = fuzzy_search(word1, &words);
        assert_eq!(x, Some("User::\'Alice\'".to_owned()));
    }

    #[test]
    fn test_match_empty() {
        let word1 = "user::Alice";
        let words: Vec<&str> = Vec::new();
        let x = fuzzy_search(word1, &words);
        assert_eq!(x, None);
    }
}