cfg_expr/
expr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
pub mod lexer;
mod parser;

use smallvec::SmallVec;
use std::ops::Range;

/// A predicate function, used to combine 1 or more predicates
/// into a single value
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
pub enum Func {
    /// `not()` with a configuration predicate. It is true if its predicate
    /// is false and false if its predicate is true.
    Not,
    /// `all()` with a comma separated list of configuration predicates. It
    /// is false if at least one predicate is false. If there are no predicates,
    /// it is true.
    ///
    /// The associated `usize` is the number of predicates inside the `all()`.
    All(usize),
    /// `any()` with a comma separated list of configuration predicates. It
    /// is true if at least one predicate is true. If there are no predicates,
    /// it is false.
    ///
    /// The associated `usize` is the number of predicates inside the `any()`.
    Any(usize),
}

use crate::targets as targ;

/// All predicates that pertains to a target, except for `target_feature`
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TargetPredicate {
    /// [target_abi](https://github.com/rust-lang/rust/issues/80970)
    Abi(targ::Abi),
    /// [target_arch](https://doc.rust-lang.org/reference/conditional-compilation.html#target_arch)
    Arch(targ::Arch),
    /// [target_endian](https://doc.rust-lang.org/reference/conditional-compilation.html#target_endian)
    Endian(targ::Endian),
    /// [target_env](https://doc.rust-lang.org/reference/conditional-compilation.html#target_env)
    Env(targ::Env),
    /// [target_family](https://doc.rust-lang.org/reference/conditional-compilation.html#target_family)
    /// This also applies to the bare [`unix` and `windows`](https://doc.rust-lang.org/reference/conditional-compilation.html#unix-and-windows)
    /// predicates.
    Family(targ::Family),
    /// [target_has_atomic](https://doc.rust-lang.org/reference/conditional-compilation.html#target_has_atomic).
    HasAtomic(targ::HasAtomic),
    /// [target_os](https://doc.rust-lang.org/reference/conditional-compilation.html#target_os)
    Os(targ::Os),
    /// [panic](https://doc.rust-lang.org/reference/conditional-compilation.html#panic)
    Panic(targ::Panic),
    /// [target_pointer_width](https://doc.rust-lang.org/reference/conditional-compilation.html#target_pointer_width)
    PointerWidth(u8),
    /// [target_vendor](https://doc.rust-lang.org/reference/conditional-compilation.html#target_vendor)
    Vendor(targ::Vendor),
}

pub trait TargetMatcher {
    fn matches(&self, tp: &TargetPredicate) -> bool;
}

impl TargetMatcher for targ::TargetInfo {
    fn matches(&self, tp: &TargetPredicate) -> bool {
        use TargetPredicate::{
            Abi, Arch, Endian, Env, Family, HasAtomic, Os, Panic, PointerWidth, Vendor,
        };

        match tp {
            // The ABI is allowed to be an empty string
            Abi(abi) => match &self.abi {
                Some(a) => abi == a,
                None => abi.0.is_empty(),
            },
            Arch(a) => a == &self.arch,
            Endian(end) => *end == self.endian,
            // The environment is allowed to be an empty string
            Env(env) => match &self.env {
                Some(e) => env == e,
                None => env.0.is_empty(),
            },
            Family(fam) => self.families.contains(fam),
            HasAtomic(has_atomic) => self.has_atomics.contains(*has_atomic),
            Os(os) => match &self.os {
                Some(self_os) => os == self_os,
                // os = "none" means it should be matched against None. Note that this is different
                // from "env" above.
                None => os.as_str() == "none",
            },
            PointerWidth(w) => *w == self.pointer_width,
            Vendor(ven) => match &self.vendor {
                Some(v) => ven == v,
                None => ven == &targ::Vendor::unknown,
            },
            Panic(panic) => &self.panic == panic,
        }
    }
}

#[cfg(feature = "targets")]
impl TargetMatcher for target_lexicon::Triple {
    #[allow(clippy::cognitive_complexity)]
    #[allow(clippy::match_same_arms)]
    fn matches(&self, tp: &TargetPredicate) -> bool {
        use target_lexicon::*;
        use TargetPredicate::{
            Abi, Arch, Endian, Env, Family, HasAtomic, Os, Panic, PointerWidth, Vendor,
        };

        const NUTTX: target_lexicon::Vendor =
            target_lexicon::Vendor::Custom(target_lexicon::CustomVendor::Static("nuttx"));

        match tp {
            Abi(_) => {
                // `target_abi` is unstable. Assume false for this.
                false
            }
            Arch(arch) => {
                if arch == &targ::Arch::x86 {
                    matches!(self.architecture, Architecture::X86_32(_))
                } else if arch == &targ::Arch::wasm32 {
                    self.architecture == Architecture::Wasm32
                        || self.architecture == Architecture::Asmjs
                } else if arch == &targ::Arch::arm {
                    matches!(self.architecture, Architecture::Arm(_))
                } else if arch == &targ::Arch::bpf {
                    self.architecture == Architecture::Bpfeb
                        || self.architecture == Architecture::Bpfel
                } else if arch == &targ::Arch::x86_64 {
                    self.architecture == Architecture::X86_64
                        || self.architecture == Architecture::X86_64h
                } else if arch == &targ::Arch::mips32r6 {
                    matches!(
                        self.architecture,
                        Architecture::Mips32(
                            Mips32Architecture::Mipsisa32r6 | Mips32Architecture::Mipsisa32r6el
                        )
                    )
                } else if arch == &targ::Arch::mips64r6 {
                    matches!(
                        self.architecture,
                        Architecture::Mips64(
                            Mips64Architecture::Mipsisa64r6 | Mips64Architecture::Mipsisa64r6el
                        )
                    )
                } else {
                    match arch.0.parse::<Architecture>() {
                        Ok(a) => match (self.architecture, a) {
                            (Architecture::Aarch64(_), Architecture::Aarch64(_))
                            | (Architecture::Mips32(_), Architecture::Mips32(_))
                            | (Architecture::Mips64(_), Architecture::Mips64(_))
                            | (Architecture::Powerpc64le, Architecture::Powerpc64)
                            | (Architecture::Riscv32(_), Architecture::Riscv32(_))
                            | (Architecture::Riscv64(_), Architecture::Riscv64(_))
                            | (Architecture::Sparcv9, Architecture::Sparc64) => true,
                            (a, b) => a == b,
                        },
                        Err(_) => false,
                    }
                }
            }
            Endian(end) => match self.architecture.endianness() {
                Ok(endian) => matches!(
                    (end, endian),
                    (crate::targets::Endian::little, Endianness::Little)
                        | (crate::targets::Endian::big, Endianness::Big)
                ),

                Err(_) => false,
            },
            Env(env) => {
                // The environment is implied by some operating systems
                match self.operating_system {
                    OperatingSystem::Redox => env == &targ::Env::relibc,
                    OperatingSystem::VxWorks => env == &targ::Env::gnu,
                    OperatingSystem::Freebsd => match self.architecture {
                        Architecture::Arm(ArmArchitecture::Armv6 | ArmArchitecture::Armv7) => {
                            env == &targ::Env::gnu
                        }
                        _ => env.0.is_empty(),
                    },
                    OperatingSystem::Netbsd => match self.architecture {
                        Architecture::Arm(ArmArchitecture::Armv6 | ArmArchitecture::Armv7) => {
                            env.0.is_empty()
                        }
                        _ => env.0.is_empty(),
                    },
                    OperatingSystem::None_
                    | OperatingSystem::Cloudabi
                    | OperatingSystem::Hermit
                    | OperatingSystem::Ios => match self.environment {
                        Environment::LinuxKernel => env == &targ::Env::gnu,
                        _ => env.0.is_empty(),
                    },
                    OperatingSystem::WasiP1 => env == &targ::Env::p1,
                    OperatingSystem::WasiP2 => env == &targ::Env::p2,
                    OperatingSystem::Wasi => env.0.is_empty() || env == &targ::Env::p1,
                    _ => {
                        if env.0.is_empty() {
                            matches!(
                                self.environment,
                                Environment::Unknown
                                    | Environment::Android
                                    | Environment::Softfloat
                                    | Environment::Androideabi
                                    | Environment::Eabi
                                    | Environment::Eabihf
                                    | Environment::Sim
                                    | Environment::None
                            )
                        } else {
                            match env.0.parse::<Environment>() {
                                Ok(e) => {
                                    // Rustc shortens multiple "gnu*" environments to just "gnu"
                                    if env == &targ::Env::gnu {
                                        match self.environment {
                                            Environment::Gnu
                                            | Environment::Gnuabi64
                                            | Environment::Gnueabi
                                            | Environment::Gnuspe
                                            | Environment::Gnux32
                                            | Environment::GnuIlp32
                                            | Environment::Gnueabihf
                                            | Environment::GnuLlvm => true,
                                            // Rust 1.49.0 changed all android targets to have the
                                            // gnu environment
                                            Environment::Android | Environment::Androideabi
                                                if self.operating_system
                                                    == OperatingSystem::Linux =>
                                            {
                                                true
                                            }
                                            Environment::Kernel => {
                                                self.operating_system == OperatingSystem::Linux
                                            }
                                            _ => false,
                                        }
                                    } else if env == &targ::Env::musl {
                                        matches!(
                                            self.environment,
                                            Environment::Musl
                                                | Environment::Musleabi
                                                | Environment::Musleabihf
                                                | Environment::Muslabi64
                                        )
                                    } else if env == &targ::Env::uclibc {
                                        matches!(
                                            self.environment,
                                            Environment::Uclibc
                                                | Environment::Uclibceabi
                                                | Environment::Uclibceabihf
                                        )
                                    } else if env == &targ::Env::newlib {
                                        matches!(
                                            self.operating_system,
                                            OperatingSystem::Horizon | OperatingSystem::Espidf
                                        )
                                    } else {
                                        self.environment == e
                                    }
                                }
                                Err(_) => false,
                            }
                        }
                    }
                }
            }
            Family(fam) => {
                use OperatingSystem::{
                    Aix, AmdHsa, Bitrig, Cloudabi, Cuda, Darwin, Dragonfly, Emscripten, Espidf,
                    Freebsd, Fuchsia, Haiku, Hermit, Horizon, Hurd, Illumos, Ios, L4re, Linux,
                    MacOSX, Nebulet, Netbsd, None_, Openbsd, Redox, Solaris, Tvos, Uefi, Unknown,
                    Visionos, VxWorks, Wasi, WasiP1, WasiP2, Watchos, Windows,
                };

                match self.operating_system {
                    AmdHsa | Bitrig | Cloudabi | Cuda | Hermit | Nebulet | None_ | Uefi => false,
                    Aix
                    | Darwin
                    | Dragonfly
                    | Espidf
                    | Freebsd
                    | Fuchsia
                    | Haiku
                    | Hurd
                    | Illumos
                    | Ios
                    | L4re
                    | MacOSX { .. }
                    | Horizon
                    | Netbsd
                    | Openbsd
                    | Redox
                    | Solaris
                    | Tvos
                    | Visionos
                    | VxWorks
                    | Watchos => fam == &crate::targets::Family::unix,
                    Emscripten => {
                        match self.architecture {
                            // asmjs, wasm32 and wasm64 are part of both the wasm and unix families
                            Architecture::Asmjs | Architecture::Wasm32 => {
                                fam == &crate::targets::Family::wasm
                                    || fam == &crate::targets::Family::unix
                            }
                            _ => false,
                        }
                    }
                    Unknown if self.vendor == NUTTX => fam == &crate::targets::Family::unix,
                    Unknown => {
                        // asmjs, wasm32 and wasm64 are part of the wasm family.
                        match self.architecture {
                            Architecture::Asmjs | Architecture::Wasm32 | Architecture::Wasm64 => {
                                fam == &crate::targets::Family::wasm
                            }
                            _ => false,
                        }
                    }
                    Linux => {
                        // The 'kernel' environment is treated specially as not-unix
                        if self.environment != Environment::Kernel {
                            fam == &crate::targets::Family::unix
                        } else {
                            false
                        }
                    }
                    Wasi | WasiP1 | WasiP2 => fam == &crate::targets::Family::wasm,
                    Windows => fam == &crate::targets::Family::windows,
                    // I really dislike non-exhaustive :(
                    _ => false,
                }
            }
            HasAtomic(_) => {
                // atomic support depends on both the architecture and the OS. Assume false for
                // this.
                false
            }
            Os(os) => {
                if os == &targ::Os::wasi
                    && matches!(
                        self.operating_system,
                        OperatingSystem::WasiP1 | OperatingSystem::WasiP2
                    )
                    || os == &targ::Os::nuttx && self.vendor == NUTTX
                {
                    return true;
                }

                match os.0.parse::<OperatingSystem>() {
                    Ok(o) => match self.environment {
                        Environment::HermitKernel => os == &targ::Os::hermit,
                        _ => self.operating_system == o,
                    },
                    Err(_) => {
                        // Handle special case for darwin/macos, where the triple is
                        // "darwin", but rustc identifies the OS as "macos"
                        if os == &targ::Os::macos
                            && self.operating_system == OperatingSystem::Darwin
                        {
                            true
                        } else {
                            // For android, the os is still linux, but the environment is android
                            os == &targ::Os::android
                                && self.operating_system == OperatingSystem::Linux
                                && (self.environment == Environment::Android
                                    || self.environment == Environment::Androideabi)
                        }
                    }
                }
            }
            Panic(_) => {
                // panic support depends on the OS. Assume false for this.
                false
            }
            Vendor(ven) => match ven.0.parse::<target_lexicon::Vendor>() {
                Ok(v) => {
                    if self.vendor == v || self.vendor == NUTTX && ven == &targ::Vendor::unknown {
                        true
                    } else if let target_lexicon::Vendor::Custom(custom) = &self.vendor {
                        matches!(custom.as_str(), "esp" | "esp32" | "esp32s2" | "esp32s3")
                            && (v == target_lexicon::Vendor::Espressif
                                || v == target_lexicon::Vendor::Unknown)
                    } else {
                        false
                    }
                }
                Err(_) => false,
            },
            PointerWidth(pw) => {
                // The gnux32 environment is a special case, where it has an
                // x86_64 architecture, but a 32-bit pointer width
                if !matches!(
                    self.environment,
                    Environment::Gnux32 | Environment::GnuIlp32
                ) {
                    *pw == match self.pointer_width() {
                        Ok(pw) => pw.bits(),
                        Err(_) => return false,
                    }
                } else {
                    *pw == 32
                }
            }
        }
    }
}

impl TargetPredicate {
    /// Returns true of the predicate matches the specified target
    ///
    /// Note that when matching against a [`target_lexicon::Triple`], the
    /// `has_target_atomic` and `panic` predicates will _always_ return `false`.
    ///
    /// ```
    /// use cfg_expr::{targets::*, expr::TargetPredicate as tp};
    /// let win = get_builtin_target_by_triple("x86_64-pc-windows-msvc").unwrap();
    ///
    /// assert!(
    ///     tp::Arch(Arch::x86_64).matches(win) &&
    ///     tp::Endian(Endian::little).matches(win) &&
    ///     tp::Env(Env::msvc).matches(win) &&
    ///     tp::Family(Family::windows).matches(win) &&
    ///     tp::Os(Os::windows).matches(win) &&
    ///     tp::PointerWidth(64).matches(win) &&
    ///     tp::Vendor(Vendor::pc).matches(win)
    /// );
    /// ```
    pub fn matches<T>(&self, target: &T) -> bool
    where
        T: TargetMatcher,
    {
        target.matches(self)
    }
}

#[derive(Clone, Debug)]
pub(crate) enum Which {
    Abi,
    Arch,
    Endian(targ::Endian),
    Env,
    Family,
    Os,
    HasAtomic(targ::HasAtomic),
    Panic,
    PointerWidth(u8),
    Vendor,
}

#[derive(Clone, Debug)]
pub(crate) struct InnerTarget {
    which: Which,
    span: Option<Range<usize>>,
}

/// A single predicate in a `cfg()` expression
#[derive(Debug, PartialEq, Eq)]
pub enum Predicate<'a> {
    /// A target predicate, with the `target_` prefix
    Target(TargetPredicate),
    /// Whether rustc's test harness is [enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#test)
    Test,
    /// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#debug_assertions)
    /// when compiling without optimizations.
    DebugAssertions,
    /// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#proc_macro) for
    /// crates of the `proc_macro` type.
    ProcMacro,
    /// A [`feature = "<name>"`](https://doc.rust-lang.org/nightly/cargo/reference/features.html)
    Feature(&'a str),
    /// [target_feature](https://doc.rust-lang.org/reference/conditional-compilation.html#target_feature)
    TargetFeature(&'a str),
    /// A generic bare predicate key that doesn't match one of the known options, eg `cfg(bare)`
    Flag(&'a str),
    /// A generic key = "value" predicate that doesn't match one of the known options, eg `cfg(foo = "bar")`
    KeyValue { key: &'a str, val: &'a str },
}

#[derive(Clone, Debug)]
pub(crate) enum InnerPredicate {
    Target(InnerTarget),
    Test,
    DebugAssertions,
    ProcMacro,
    Feature(Range<usize>),
    TargetFeature(Range<usize>),
    Other {
        identifier: Range<usize>,
        value: Option<Range<usize>>,
    },
}

impl InnerPredicate {
    fn to_pred<'a>(&self, s: &'a str) -> Predicate<'a> {
        use InnerPredicate as IP;
        use Predicate::{
            DebugAssertions, Feature, Flag, KeyValue, ProcMacro, Target, TargetFeature, Test,
        };

        match self {
            IP::Target(it) => match &it.which {
                Which::Abi => Target(TargetPredicate::Abi(targ::Abi::new(
                    s[it.span.clone().unwrap()].to_owned(),
                ))),
                Which::Arch => Target(TargetPredicate::Arch(targ::Arch::new(
                    s[it.span.clone().unwrap()].to_owned(),
                ))),
                Which::Os => Target(TargetPredicate::Os(targ::Os::new(
                    s[it.span.clone().unwrap()].to_owned(),
                ))),
                Which::Vendor => Target(TargetPredicate::Vendor(targ::Vendor::new(
                    s[it.span.clone().unwrap()].to_owned(),
                ))),
                Which::Env => Target(TargetPredicate::Env(targ::Env::new(
                    s[it.span.clone().unwrap()].to_owned(),
                ))),
                Which::Family => Target(TargetPredicate::Family(targ::Family::new(
                    s[it.span.clone().unwrap()].to_owned(),
                ))),
                Which::Endian(end) => Target(TargetPredicate::Endian(*end)),
                Which::HasAtomic(has_atomic) => Target(TargetPredicate::HasAtomic(*has_atomic)),
                Which::Panic => Target(TargetPredicate::Panic(targ::Panic::new(
                    s[it.span.clone().unwrap()].to_owned(),
                ))),
                Which::PointerWidth(pw) => Target(TargetPredicate::PointerWidth(*pw)),
            },
            IP::Test => Test,
            IP::DebugAssertions => DebugAssertions,
            IP::ProcMacro => ProcMacro,
            IP::Feature(rng) => Feature(&s[rng.clone()]),
            IP::TargetFeature(rng) => TargetFeature(&s[rng.clone()]),
            IP::Other { identifier, value } => match value {
                Some(vs) => KeyValue {
                    key: &s[identifier.clone()],
                    val: &s[vs.clone()],
                },
                None => Flag(&s[identifier.clone()]),
            },
        }
    }
}

#[derive(Clone, Debug)]
pub(crate) enum ExprNode {
    Fn(Func),
    Predicate(InnerPredicate),
}

/// A parsed `cfg()` expression that can evaluated
#[derive(Clone, Debug)]
pub struct Expression {
    pub(crate) expr: SmallVec<[ExprNode; 5]>,
    // We keep the original string around for providing the arbitrary
    // strings that can make up an expression
    pub(crate) original: String,
}

impl Expression {
    /// An iterator over each predicate in the expression
    pub fn predicates(&self) -> impl Iterator<Item = Predicate<'_>> {
        self.expr.iter().filter_map(move |item| match item {
            ExprNode::Predicate(pred) => {
                let pred = pred.clone().to_pred(&self.original);
                Some(pred)
            }
            ExprNode::Fn(_) => None,
        })
    }

    /// Evaluates the expression, using the provided closure to determine the value of
    /// each predicate, which are then combined into a final result depending on the
    /// functions `not()`, `all()`, or `any()` in the expression.
    ///
    /// `eval_predicate` typically returns `bool`, but may return any type that implements
    /// the `Logic` trait.
    ///
    /// ## Examples
    ///
    /// ```
    /// use cfg_expr::{targets::*, Expression, Predicate};
    ///
    /// let linux_musl = get_builtin_target_by_triple("x86_64-unknown-linux-musl").unwrap();
    ///
    /// let expr = Expression::parse(r#"all(not(windows), target_env = "musl", any(target_arch = "x86", target_arch = "x86_64"))"#).unwrap();
    ///
    /// assert!(expr.eval(|pred| {
    ///     match pred {
    ///         Predicate::Target(tp) => tp.matches(linux_musl),
    ///         _ => false,
    ///     }
    /// }));
    /// ```
    ///
    /// Returning `Option<bool>`, where `None` indicates the result is unknown:
    ///
    /// ```
    /// use cfg_expr::{targets::*, Expression, Predicate};
    ///
    /// let expr = Expression::parse(r#"any(target_feature = "sse2", target_env = "musl")"#).unwrap();
    ///
    /// let linux_gnu = get_builtin_target_by_triple("x86_64-unknown-linux-gnu").unwrap();
    /// let linux_musl = get_builtin_target_by_triple("x86_64-unknown-linux-musl").unwrap();
    ///
    /// fn eval(expr: &Expression, target: &TargetInfo) -> Option<bool> {
    ///     expr.eval(|pred| {
    ///         match pred {
    ///             Predicate::Target(tp) => Some(tp.matches(target)),
    ///             Predicate::TargetFeature(_) => None,
    ///             _ => panic!("unexpected predicate"),
    ///         }
    ///     })
    /// }
    ///
    /// // Whether the target feature is present is unknown, so the whole expression evaluates to
    /// // None (unknown).
    /// assert_eq!(eval(&expr, linux_gnu), None);
    ///
    /// // Whether the target feature is present is irrelevant for musl, since the any() always
    /// // evaluates to true.
    /// assert_eq!(eval(&expr, linux_musl), Some(true));
    /// ```
    pub fn eval<EP, T>(&self, mut eval_predicate: EP) -> T
    where
        EP: FnMut(&Predicate<'_>) -> T,
        T: Logic + std::fmt::Debug,
    {
        let mut result_stack = SmallVec::<[T; 8]>::new();

        // We store the expression as postfix, so just evaluate each component
        // requirement in the order it comes, and then combining the previous
        // results according to each operator as it comes
        for node in self.expr.iter() {
            match node {
                ExprNode::Predicate(pred) => {
                    let pred = pred.to_pred(&self.original);

                    result_stack.push(eval_predicate(&pred));
                }
                ExprNode::Fn(Func::All(count)) => {
                    // all() with a comma separated list of configuration predicates.
                    let mut result = T::top();

                    for _ in 0..*count {
                        let r = result_stack.pop().unwrap();
                        result = result.and(r);
                    }

                    result_stack.push(result);
                }
                ExprNode::Fn(Func::Any(count)) => {
                    // any() with a comma separated list of configuration predicates.
                    let mut result = T::bottom();

                    for _ in 0..*count {
                        let r = result_stack.pop().unwrap();
                        result = result.or(r);
                    }

                    result_stack.push(result);
                }
                ExprNode::Fn(Func::Not) => {
                    // not() with a configuration predicate.
                    // It is true if its predicate is false
                    // and false if its predicate is true.
                    let r = result_stack.pop().unwrap();
                    result_stack.push(r.not());
                }
            }
        }

        result_stack.pop().unwrap()
    }

    /// The original string which has been parsed to produce this [`Expression`].
    ///
    /// ```
    /// use cfg_expr::Expression;
    ///
    /// assert_eq!(
    ///     Expression::parse("any()").unwrap().original(),
    ///     "any()"
    /// );
    /// ```
    #[inline]
    pub fn original(&self) -> &str {
        &self.original
    }
}

/// [`PartialEq`] will do a **syntactical** comparison, so will just check if both
/// expressions have been parsed from the same string, **not** if they are semantically
/// equivalent.
///
/// ```
/// use cfg_expr::Expression;
///
/// assert_eq!(
///     Expression::parse("any()").unwrap(),
///     Expression::parse("any()").unwrap()
/// );
/// assert_ne!(
///     Expression::parse("any()").unwrap(),
///     Expression::parse("unix").unwrap()
/// );
/// ```
impl PartialEq for Expression {
    fn eq(&self, other: &Self) -> bool {
        self.original.eq(&other.original)
    }
}

/// A propositional logic used to evaluate `Expression` instances.
///
/// An `Expression` consists of some predicates and the `any`, `all` and `not` operators. An
/// implementation of `Logic` defines how the `any`, `all` and `not` operators should be evaluated.
pub trait Logic {
    /// The result of an `all` operation with no operands, akin to Boolean `true`.
    fn top() -> Self;

    /// The result of an `any` operation with no operands, akin to Boolean `false`.
    fn bottom() -> Self;

    /// `AND`, which corresponds to the `all` operator.
    fn and(self, other: Self) -> Self;

    /// `OR`, which corresponds to the `any` operator.
    fn or(self, other: Self) -> Self;

    /// `NOT`, which corresponds to the `not` operator.
    fn not(self) -> Self;
}

/// A boolean logic.
impl Logic for bool {
    #[inline]
    fn top() -> Self {
        true
    }

    #[inline]
    fn bottom() -> Self {
        false
    }

    #[inline]
    fn and(self, other: Self) -> Self {
        self && other
    }

    #[inline]
    fn or(self, other: Self) -> Self {
        self || other
    }

    #[inline]
    fn not(self) -> Self {
        !self
    }
}

/// A three-valued logic -- `None` stands for the value being unknown.
///
/// The truth tables for this logic are described on
/// [Wikipedia](https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics).
impl Logic for Option<bool> {
    #[inline]
    fn top() -> Self {
        Some(true)
    }

    #[inline]
    fn bottom() -> Self {
        Some(false)
    }

    #[inline]
    fn and(self, other: Self) -> Self {
        match (self, other) {
            // If either is false, the expression is false.
            (Some(false), _) | (_, Some(false)) => Some(false),
            // If both are true, the expression is true.
            (Some(true), Some(true)) => Some(true),
            // One or both are unknown -- the result is unknown.
            _ => None,
        }
    }

    #[inline]
    fn or(self, other: Self) -> Self {
        match (self, other) {
            // If either is true, the expression is true.
            (Some(true), _) | (_, Some(true)) => Some(true),
            // If both are false, the expression is false.
            (Some(false), Some(false)) => Some(false),
            // One or both are unknown -- the result is unknown.
            _ => None,
        }
    }

    #[inline]
    fn not(self) -> Self {
        self.map(|v| !v)
    }
}