cfg_expr/expr.rs
1pub mod lexer;
2mod parser;
3
4use smallvec::SmallVec;
5use std::ops::Range;
6
7/// A predicate function, used to combine 1 or more predicates
8/// into a single value
9#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
10pub enum Func {
11 /// `not()` with a configuration predicate. It is true if its predicate
12 /// is false and false if its predicate is true.
13 Not,
14 /// `all()` with a comma separated list of configuration predicates. It
15 /// is false if at least one predicate is false. If there are no predicates,
16 /// it is true.
17 ///
18 /// The associated `usize` is the number of predicates inside the `all()`.
19 All(usize),
20 /// `any()` with a comma separated list of configuration predicates. It
21 /// is true if at least one predicate is true. If there are no predicates,
22 /// it is false.
23 ///
24 /// The associated `usize` is the number of predicates inside the `any()`.
25 Any(usize),
26}
27
28use crate::targets as targ;
29
30/// All predicates that pertains to a target, except for `target_feature`
31#[derive(Clone, PartialEq, Eq, Debug)]
32pub enum TargetPredicate {
33 /// [target_abi](https://github.com/rust-lang/rust/issues/80970)
34 Abi(targ::Abi),
35 /// [target_arch](https://doc.rust-lang.org/reference/conditional-compilation.html#target_arch)
36 Arch(targ::Arch),
37 /// [target_endian](https://doc.rust-lang.org/reference/conditional-compilation.html#target_endian)
38 Endian(targ::Endian),
39 /// [target_env](https://doc.rust-lang.org/reference/conditional-compilation.html#target_env)
40 Env(targ::Env),
41 /// [target_family](https://doc.rust-lang.org/reference/conditional-compilation.html#target_family)
42 /// This also applies to the bare [`unix` and `windows`](https://doc.rust-lang.org/reference/conditional-compilation.html#unix-and-windows)
43 /// predicates.
44 Family(targ::Family),
45 /// [target_has_atomic](https://doc.rust-lang.org/reference/conditional-compilation.html#target_has_atomic).
46 HasAtomic(targ::HasAtomic),
47 /// [target_os](https://doc.rust-lang.org/reference/conditional-compilation.html#target_os)
48 Os(targ::Os),
49 /// [panic](https://doc.rust-lang.org/reference/conditional-compilation.html#panic)
50 Panic(targ::Panic),
51 /// [target_pointer_width](https://doc.rust-lang.org/reference/conditional-compilation.html#target_pointer_width)
52 PointerWidth(u8),
53 /// [target_vendor](https://doc.rust-lang.org/reference/conditional-compilation.html#target_vendor)
54 Vendor(targ::Vendor),
55}
56
57pub trait TargetMatcher {
58 fn matches(&self, tp: &TargetPredicate) -> bool;
59}
60
61impl TargetMatcher for targ::TargetInfo {
62 fn matches(&self, tp: &TargetPredicate) -> bool {
63 use TargetPredicate::{
64 Abi, Arch, Endian, Env, Family, HasAtomic, Os, Panic, PointerWidth, Vendor,
65 };
66
67 match tp {
68 // The ABI is allowed to be an empty string
69 Abi(abi) => match &self.abi {
70 Some(a) => abi == a,
71 None => abi.0.is_empty(),
72 },
73 Arch(a) => a == &self.arch,
74 Endian(end) => *end == self.endian,
75 // The environment is allowed to be an empty string
76 Env(env) => match &self.env {
77 Some(e) => env == e,
78 None => env.0.is_empty(),
79 },
80 Family(fam) => self.families.contains(fam),
81 HasAtomic(has_atomic) => self.has_atomics.contains(*has_atomic),
82 Os(os) => match &self.os {
83 Some(self_os) => os == self_os,
84 // os = "none" means it should be matched against None. Note that this is different
85 // from "env" above.
86 None => os.as_str() == "none",
87 },
88 PointerWidth(w) => *w == self.pointer_width,
89 Vendor(ven) => match &self.vendor {
90 Some(v) => ven == v,
91 None => ven == &targ::Vendor::unknown,
92 },
93 Panic(panic) => &self.panic == panic,
94 }
95 }
96}
97
98#[cfg(feature = "targets")]
99impl TargetMatcher for target_lexicon::Triple {
100 #[allow(clippy::cognitive_complexity)]
101 #[allow(clippy::match_same_arms)]
102 fn matches(&self, tp: &TargetPredicate) -> bool {
103 use target_lexicon::*;
104 use TargetPredicate::{
105 Abi, Arch, Endian, Env, Family, HasAtomic, Os, Panic, PointerWidth, Vendor,
106 };
107
108 const NUTTX: target_lexicon::Vendor =
109 target_lexicon::Vendor::Custom(target_lexicon::CustomVendor::Static("nuttx"));
110 const RTEMS: target_lexicon::Vendor =
111 target_lexicon::Vendor::Custom(target_lexicon::CustomVendor::Static("rtems"));
112
113 match tp {
114 Abi(_) => {
115 // `target_abi` is unstable. Assume false for this.
116 false
117 }
118 Arch(arch) => {
119 if arch == &targ::Arch::x86 {
120 matches!(self.architecture, Architecture::X86_32(_))
121 } else if arch == &targ::Arch::wasm32 {
122 self.architecture == Architecture::Wasm32
123 || self.architecture == Architecture::Asmjs
124 } else if arch == &targ::Arch::arm {
125 matches!(self.architecture, Architecture::Arm(_))
126 } else if arch == &targ::Arch::bpf {
127 self.architecture == Architecture::Bpfeb
128 || self.architecture == Architecture::Bpfel
129 } else if arch == &targ::Arch::x86_64 {
130 self.architecture == Architecture::X86_64
131 || self.architecture == Architecture::X86_64h
132 } else if arch == &targ::Arch::mips32r6 {
133 matches!(
134 self.architecture,
135 Architecture::Mips32(
136 Mips32Architecture::Mipsisa32r6 | Mips32Architecture::Mipsisa32r6el
137 )
138 )
139 } else if arch == &targ::Arch::mips64r6 {
140 matches!(
141 self.architecture,
142 Architecture::Mips64(
143 Mips64Architecture::Mipsisa64r6 | Mips64Architecture::Mipsisa64r6el
144 )
145 )
146 } else {
147 match arch.0.parse::<Architecture>() {
148 Ok(a) => match (self.architecture, a) {
149 (Architecture::Aarch64(_), Architecture::Aarch64(_))
150 | (Architecture::Mips32(_), Architecture::Mips32(_))
151 | (Architecture::Mips64(_), Architecture::Mips64(_))
152 | (Architecture::Powerpc64le, Architecture::Powerpc64)
153 | (Architecture::Riscv32(_), Architecture::Riscv32(_))
154 | (Architecture::Riscv64(_), Architecture::Riscv64(_))
155 | (Architecture::Sparcv9, Architecture::Sparc64) => true,
156 (a, b) => a == b,
157 },
158 Err(_) => false,
159 }
160 }
161 }
162 Endian(end) => match self.architecture.endianness() {
163 Ok(endian) => matches!(
164 (end, endian),
165 (crate::targets::Endian::little, Endianness::Little)
166 | (crate::targets::Endian::big, Endianness::Big)
167 ),
168
169 Err(_) => false,
170 },
171 Env(env) => {
172 // The environment is implied by some operating systems
173 match self.operating_system {
174 OperatingSystem::Redox => env == &targ::Env::relibc,
175 OperatingSystem::VxWorks => env == &targ::Env::gnu,
176 OperatingSystem::Freebsd => env.0.is_empty(),
177 OperatingSystem::Netbsd => match self.architecture {
178 Architecture::Arm(ArmArchitecture::Armv6 | ArmArchitecture::Armv7) => {
179 env.0.is_empty()
180 }
181 _ => env.0.is_empty(),
182 },
183 OperatingSystem::None_
184 | OperatingSystem::Cloudabi
185 | OperatingSystem::Hermit
186 | OperatingSystem::IOS(_) => match self.environment {
187 Environment::LinuxKernel => env == &targ::Env::gnu,
188 _ => env.0.is_empty(),
189 },
190 OperatingSystem::WasiP1 => env == &targ::Env::p1,
191 OperatingSystem::WasiP2 => env == &targ::Env::p2,
192 OperatingSystem::Wasi => env.0.is_empty() || env == &targ::Env::p1,
193 _ => {
194 if env.0.is_empty() {
195 matches!(
196 self.environment,
197 Environment::Unknown
198 | Environment::Android
199 | Environment::Softfloat
200 | Environment::Androideabi
201 | Environment::Eabi
202 | Environment::Eabihf
203 | Environment::Sim
204 | Environment::None
205 )
206 } else {
207 match env.0.parse::<Environment>() {
208 Ok(e) => {
209 // Rustc shortens multiple "gnu*" environments to just "gnu"
210 if env == &targ::Env::gnu {
211 match self.environment {
212 Environment::Gnu
213 | Environment::Gnuabi64
214 | Environment::Gnueabi
215 | Environment::Gnuspe
216 | Environment::Gnux32
217 | Environment::GnuIlp32
218 | Environment::Gnueabihf
219 | Environment::GnuLlvm => true,
220 // Rust 1.49.0 changed all android targets to have the
221 // gnu environment
222 Environment::Android | Environment::Androideabi
223 if self.operating_system
224 == OperatingSystem::Linux =>
225 {
226 true
227 }
228 Environment::Kernel => {
229 self.operating_system == OperatingSystem::Linux
230 }
231 _ => self.architecture == Architecture::Avr,
232 }
233 } else if env == &targ::Env::musl {
234 matches!(
235 self.environment,
236 Environment::Musl
237 | Environment::Musleabi
238 | Environment::Musleabihf
239 | Environment::Muslabi64
240 )
241 } else if env == &targ::Env::uclibc {
242 matches!(
243 self.environment,
244 Environment::Uclibc
245 | Environment::Uclibceabi
246 | Environment::Uclibceabihf
247 )
248 } else if env == &targ::Env::newlib {
249 matches!(
250 self.operating_system,
251 OperatingSystem::Horizon | OperatingSystem::Espidf
252 ) || self.vendor == RTEMS
253 } else {
254 self.environment == e
255 }
256 }
257 Err(_) => false,
258 }
259 }
260 }
261 }
262 }
263 Family(fam) => {
264 use OperatingSystem::{
265 Aix, AmdHsa, Bitrig, Cloudabi, Cuda, Darwin, Dragonfly, Emscripten, Espidf,
266 Freebsd, Fuchsia, Haiku, Hermit, Horizon, Hurd, Illumos, L4re, Linux, MacOSX,
267 Nebulet, Netbsd, None_, Openbsd, Redox, Solaris, TvOS, Uefi, Unknown, VisionOS,
268 VxWorks, Wasi, WasiP1, WasiP2, WatchOS, Windows, IOS,
269 };
270
271 match self.operating_system {
272 AmdHsa | Bitrig | Cloudabi | Cuda | Hermit | Nebulet | None_ | Uefi => false,
273 Aix
274 | Darwin(_)
275 | Dragonfly
276 | Espidf
277 | Freebsd
278 | Fuchsia
279 | Haiku
280 | Hurd
281 | Illumos
282 | IOS(_)
283 | L4re
284 | MacOSX { .. }
285 | Horizon
286 | Netbsd
287 | Openbsd
288 | Redox
289 | Solaris
290 | TvOS(_)
291 | VisionOS(_)
292 | VxWorks
293 | WatchOS(_) => fam == &crate::targets::Family::unix,
294 Emscripten => {
295 match self.architecture {
296 // asmjs, wasm32 and wasm64 are part of both the wasm and unix families
297 Architecture::Asmjs | Architecture::Wasm32 => {
298 fam == &crate::targets::Family::wasm
299 || fam == &crate::targets::Family::unix
300 }
301 _ => false,
302 }
303 }
304 Unknown if self.vendor == NUTTX || self.vendor == RTEMS => {
305 fam == &crate::targets::Family::unix
306 }
307 Unknown => {
308 // asmjs, wasm32 and wasm64 are part of the wasm family.
309 match self.architecture {
310 Architecture::Asmjs | Architecture::Wasm32 | Architecture::Wasm64 => {
311 fam == &crate::targets::Family::wasm
312 }
313 _ => false,
314 }
315 }
316 Linux => {
317 // The 'kernel' environment is treated specially as not-unix
318 if self.environment != Environment::Kernel {
319 fam == &crate::targets::Family::unix
320 } else {
321 false
322 }
323 }
324 Wasi | WasiP1 | WasiP2 => fam == &crate::targets::Family::wasm,
325 Windows => fam == &crate::targets::Family::windows,
326 // I really dislike non-exhaustive :(
327 _ => false,
328 }
329 }
330 HasAtomic(_) => {
331 // atomic support depends on both the architecture and the OS. Assume false for
332 // this.
333 false
334 }
335 Os(os) => {
336 if os == &targ::Os::wasi
337 && matches!(
338 self.operating_system,
339 OperatingSystem::WasiP1 | OperatingSystem::WasiP2
340 )
341 || (os == &targ::Os::nuttx && self.vendor == NUTTX)
342 || (os == &targ::Os::rtems && self.vendor == RTEMS)
343 {
344 return true;
345 }
346
347 match os.0.parse::<OperatingSystem>() {
348 Ok(o) => match self.environment {
349 Environment::HermitKernel => os == &targ::Os::hermit,
350 _ => self.operating_system == o,
351 },
352 Err(_) => {
353 // Handle special case for darwin/macos, where the triple is
354 // "darwin", but rustc identifies the OS as "macos"
355 if os == &targ::Os::macos
356 && matches!(self.operating_system, OperatingSystem::Darwin(_))
357 {
358 true
359 } else {
360 // For android, the os is still linux, but the environment is android
361 os == &targ::Os::android
362 && self.operating_system == OperatingSystem::Linux
363 && (self.environment == Environment::Android
364 || self.environment == Environment::Androideabi)
365 }
366 }
367 }
368 }
369 Panic(_) => {
370 // panic support depends on the OS. Assume false for this.
371 false
372 }
373 Vendor(ven) => match ven.0.parse::<target_lexicon::Vendor>() {
374 Ok(v) => {
375 if self.vendor == v
376 || ((self.vendor == NUTTX || self.vendor == RTEMS)
377 && ven == &targ::Vendor::unknown)
378 {
379 true
380 } else if let target_lexicon::Vendor::Custom(custom) = &self.vendor {
381 matches!(custom.as_str(), "esp" | "esp32" | "esp32s2" | "esp32s3")
382 && (v == target_lexicon::Vendor::Espressif
383 || v == target_lexicon::Vendor::Unknown)
384 } else {
385 false
386 }
387 }
388 Err(_) => false,
389 },
390 PointerWidth(pw) => {
391 // The gnux32 environment is a special case, where it has an
392 // x86_64 architecture, but a 32-bit pointer width
393 if !matches!(
394 self.environment,
395 Environment::Gnux32 | Environment::GnuIlp32
396 ) {
397 *pw == match self.pointer_width() {
398 Ok(pw) => pw.bits(),
399 Err(_) => return false,
400 }
401 } else {
402 *pw == 32
403 }
404 }
405 }
406 }
407}
408
409impl TargetPredicate {
410 /// Returns true of the predicate matches the specified target
411 ///
412 /// Note that when matching against a [`target_lexicon::Triple`], the
413 /// `has_target_atomic` and `panic` predicates will _always_ return `false`.
414 ///
415 /// ```
416 /// use cfg_expr::{targets::*, expr::TargetPredicate as tp};
417 /// let win = get_builtin_target_by_triple("x86_64-pc-windows-msvc").unwrap();
418 ///
419 /// assert!(
420 /// tp::Arch(Arch::x86_64).matches(win) &&
421 /// tp::Endian(Endian::little).matches(win) &&
422 /// tp::Env(Env::msvc).matches(win) &&
423 /// tp::Family(Family::windows).matches(win) &&
424 /// tp::Os(Os::windows).matches(win) &&
425 /// tp::PointerWidth(64).matches(win) &&
426 /// tp::Vendor(Vendor::pc).matches(win)
427 /// );
428 /// ```
429 pub fn matches<T>(&self, target: &T) -> bool
430 where
431 T: TargetMatcher,
432 {
433 target.matches(self)
434 }
435}
436
437#[derive(Clone, Debug)]
438pub(crate) enum Which {
439 Abi,
440 Arch,
441 Endian(targ::Endian),
442 Env,
443 Family,
444 Os,
445 HasAtomic(targ::HasAtomic),
446 Panic,
447 PointerWidth(u8),
448 Vendor,
449}
450
451#[derive(Clone, Debug)]
452pub(crate) struct InnerTarget {
453 which: Which,
454 span: Option<Range<usize>>,
455}
456
457/// A single predicate in a `cfg()` expression
458#[derive(Debug, PartialEq, Eq)]
459pub enum Predicate<'a> {
460 /// A target predicate, with the `target_` prefix
461 Target(TargetPredicate),
462 /// Whether rustc's test harness is [enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#test)
463 Test,
464 /// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#debug_assertions)
465 /// when compiling without optimizations.
466 DebugAssertions,
467 /// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#proc_macro) for
468 /// crates of the `proc_macro` type.
469 ProcMacro,
470 /// A [`feature = "<name>"`](https://doc.rust-lang.org/nightly/cargo/reference/features.html)
471 Feature(&'a str),
472 /// [target_feature](https://doc.rust-lang.org/reference/conditional-compilation.html#target_feature)
473 TargetFeature(&'a str),
474 /// A generic bare predicate key that doesn't match one of the known options, eg `cfg(bare)`
475 Flag(&'a str),
476 /// A generic key = "value" predicate that doesn't match one of the known options, eg `cfg(foo = "bar")`
477 KeyValue { key: &'a str, val: &'a str },
478}
479
480#[derive(Clone, Debug)]
481pub(crate) enum InnerPredicate {
482 Target(InnerTarget),
483 Test,
484 DebugAssertions,
485 ProcMacro,
486 Feature(Range<usize>),
487 TargetFeature(Range<usize>),
488 Other {
489 identifier: Range<usize>,
490 value: Option<Range<usize>>,
491 },
492}
493
494impl InnerPredicate {
495 fn to_pred<'a>(&self, s: &'a str) -> Predicate<'a> {
496 use InnerPredicate as IP;
497 use Predicate::{
498 DebugAssertions, Feature, Flag, KeyValue, ProcMacro, Target, TargetFeature, Test,
499 };
500
501 match self {
502 IP::Target(it) => match &it.which {
503 Which::Abi => Target(TargetPredicate::Abi(targ::Abi::new(
504 s[it.span.clone().unwrap()].to_owned(),
505 ))),
506 Which::Arch => Target(TargetPredicate::Arch(targ::Arch::new(
507 s[it.span.clone().unwrap()].to_owned(),
508 ))),
509 Which::Os => Target(TargetPredicate::Os(targ::Os::new(
510 s[it.span.clone().unwrap()].to_owned(),
511 ))),
512 Which::Vendor => Target(TargetPredicate::Vendor(targ::Vendor::new(
513 s[it.span.clone().unwrap()].to_owned(),
514 ))),
515 Which::Env => Target(TargetPredicate::Env(targ::Env::new(
516 s[it.span.clone().unwrap()].to_owned(),
517 ))),
518 Which::Family => Target(TargetPredicate::Family(targ::Family::new(
519 s[it.span.clone().unwrap()].to_owned(),
520 ))),
521 Which::Endian(end) => Target(TargetPredicate::Endian(*end)),
522 Which::HasAtomic(has_atomic) => Target(TargetPredicate::HasAtomic(*has_atomic)),
523 Which::Panic => Target(TargetPredicate::Panic(targ::Panic::new(
524 s[it.span.clone().unwrap()].to_owned(),
525 ))),
526 Which::PointerWidth(pw) => Target(TargetPredicate::PointerWidth(*pw)),
527 },
528 IP::Test => Test,
529 IP::DebugAssertions => DebugAssertions,
530 IP::ProcMacro => ProcMacro,
531 IP::Feature(rng) => Feature(&s[rng.clone()]),
532 IP::TargetFeature(rng) => TargetFeature(&s[rng.clone()]),
533 IP::Other { identifier, value } => match value {
534 Some(vs) => KeyValue {
535 key: &s[identifier.clone()],
536 val: &s[vs.clone()],
537 },
538 None => Flag(&s[identifier.clone()]),
539 },
540 }
541 }
542}
543
544#[derive(Clone, Debug)]
545pub(crate) enum ExprNode {
546 Fn(Func),
547 Predicate(InnerPredicate),
548}
549
550/// A parsed `cfg()` expression that can evaluated
551#[derive(Clone, Debug)]
552pub struct Expression {
553 pub(crate) expr: SmallVec<[ExprNode; 5]>,
554 // We keep the original string around for providing the arbitrary
555 // strings that can make up an expression
556 pub(crate) original: String,
557}
558
559impl Expression {
560 /// An iterator over each predicate in the expression
561 pub fn predicates(&self) -> impl Iterator<Item = Predicate<'_>> {
562 self.expr.iter().filter_map(move |item| match item {
563 ExprNode::Predicate(pred) => {
564 let pred = pred.clone().to_pred(&self.original);
565 Some(pred)
566 }
567 ExprNode::Fn(_) => None,
568 })
569 }
570
571 /// Evaluates the expression, using the provided closure to determine the value of
572 /// each predicate, which are then combined into a final result depending on the
573 /// functions `not()`, `all()`, or `any()` in the expression.
574 ///
575 /// `eval_predicate` typically returns `bool`, but may return any type that implements
576 /// the `Logic` trait.
577 ///
578 /// ## Examples
579 ///
580 /// ```
581 /// use cfg_expr::{targets::*, Expression, Predicate};
582 ///
583 /// let linux_musl = get_builtin_target_by_triple("x86_64-unknown-linux-musl").unwrap();
584 ///
585 /// let expr = Expression::parse(r#"all(not(windows), target_env = "musl", any(target_arch = "x86", target_arch = "x86_64"))"#).unwrap();
586 ///
587 /// assert!(expr.eval(|pred| {
588 /// match pred {
589 /// Predicate::Target(tp) => tp.matches(linux_musl),
590 /// _ => false,
591 /// }
592 /// }));
593 /// ```
594 ///
595 /// Returning `Option<bool>`, where `None` indicates the result is unknown:
596 ///
597 /// ```
598 /// use cfg_expr::{targets::*, Expression, Predicate};
599 ///
600 /// let expr = Expression::parse(r#"any(target_feature = "sse2", target_env = "musl")"#).unwrap();
601 ///
602 /// let linux_gnu = get_builtin_target_by_triple("x86_64-unknown-linux-gnu").unwrap();
603 /// let linux_musl = get_builtin_target_by_triple("x86_64-unknown-linux-musl").unwrap();
604 ///
605 /// fn eval(expr: &Expression, target: &TargetInfo) -> Option<bool> {
606 /// expr.eval(|pred| {
607 /// match pred {
608 /// Predicate::Target(tp) => Some(tp.matches(target)),
609 /// Predicate::TargetFeature(_) => None,
610 /// _ => panic!("unexpected predicate"),
611 /// }
612 /// })
613 /// }
614 ///
615 /// // Whether the target feature is present is unknown, so the whole expression evaluates to
616 /// // None (unknown).
617 /// assert_eq!(eval(&expr, linux_gnu), None);
618 ///
619 /// // Whether the target feature is present is irrelevant for musl, since the any() always
620 /// // evaluates to true.
621 /// assert_eq!(eval(&expr, linux_musl), Some(true));
622 /// ```
623 pub fn eval<EP, T>(&self, mut eval_predicate: EP) -> T
624 where
625 EP: FnMut(&Predicate<'_>) -> T,
626 T: Logic + std::fmt::Debug,
627 {
628 let mut result_stack = SmallVec::<[T; 8]>::new();
629
630 // We store the expression as postfix, so just evaluate each component
631 // requirement in the order it comes, and then combining the previous
632 // results according to each operator as it comes
633 for node in self.expr.iter() {
634 match node {
635 ExprNode::Predicate(pred) => {
636 let pred = pred.to_pred(&self.original);
637
638 result_stack.push(eval_predicate(&pred));
639 }
640 ExprNode::Fn(Func::All(count)) => {
641 // all() with a comma separated list of configuration predicates.
642 let mut result = T::top();
643
644 for _ in 0..*count {
645 let r = result_stack.pop().unwrap();
646 result = result.and(r);
647 }
648
649 result_stack.push(result);
650 }
651 ExprNode::Fn(Func::Any(count)) => {
652 // any() with a comma separated list of configuration predicates.
653 let mut result = T::bottom();
654
655 for _ in 0..*count {
656 let r = result_stack.pop().unwrap();
657 result = result.or(r);
658 }
659
660 result_stack.push(result);
661 }
662 ExprNode::Fn(Func::Not) => {
663 // not() with a configuration predicate.
664 // It is true if its predicate is false
665 // and false if its predicate is true.
666 let r = result_stack.pop().unwrap();
667 result_stack.push(r.not());
668 }
669 }
670 }
671
672 result_stack.pop().unwrap()
673 }
674
675 /// The original string which has been parsed to produce this [`Expression`].
676 ///
677 /// ```
678 /// use cfg_expr::Expression;
679 ///
680 /// assert_eq!(
681 /// Expression::parse("any()").unwrap().original(),
682 /// "any()"
683 /// );
684 /// ```
685 #[inline]
686 pub fn original(&self) -> &str {
687 &self.original
688 }
689}
690
691/// [`PartialEq`] will do a **syntactical** comparison, so will just check if both
692/// expressions have been parsed from the same string, **not** if they are semantically
693/// equivalent.
694///
695/// ```
696/// use cfg_expr::Expression;
697///
698/// assert_eq!(
699/// Expression::parse("any()").unwrap(),
700/// Expression::parse("any()").unwrap()
701/// );
702/// assert_ne!(
703/// Expression::parse("any()").unwrap(),
704/// Expression::parse("unix").unwrap()
705/// );
706/// ```
707impl PartialEq for Expression {
708 fn eq(&self, other: &Self) -> bool {
709 self.original.eq(&other.original)
710 }
711}
712
713/// A propositional logic used to evaluate `Expression` instances.
714///
715/// An `Expression` consists of some predicates and the `any`, `all` and `not` operators. An
716/// implementation of `Logic` defines how the `any`, `all` and `not` operators should be evaluated.
717pub trait Logic {
718 /// The result of an `all` operation with no operands, akin to Boolean `true`.
719 fn top() -> Self;
720
721 /// The result of an `any` operation with no operands, akin to Boolean `false`.
722 fn bottom() -> Self;
723
724 /// `AND`, which corresponds to the `all` operator.
725 fn and(self, other: Self) -> Self;
726
727 /// `OR`, which corresponds to the `any` operator.
728 fn or(self, other: Self) -> Self;
729
730 /// `NOT`, which corresponds to the `not` operator.
731 fn not(self) -> Self;
732}
733
734/// A boolean logic.
735impl Logic for bool {
736 #[inline]
737 fn top() -> Self {
738 true
739 }
740
741 #[inline]
742 fn bottom() -> Self {
743 false
744 }
745
746 #[inline]
747 fn and(self, other: Self) -> Self {
748 self && other
749 }
750
751 #[inline]
752 fn or(self, other: Self) -> Self {
753 self || other
754 }
755
756 #[inline]
757 fn not(self) -> Self {
758 !self
759 }
760}
761
762/// A three-valued logic -- `None` stands for the value being unknown.
763///
764/// The truth tables for this logic are described on
765/// [Wikipedia](https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics).
766impl Logic for Option<bool> {
767 #[inline]
768 fn top() -> Self {
769 Some(true)
770 }
771
772 #[inline]
773 fn bottom() -> Self {
774 Some(false)
775 }
776
777 #[inline]
778 fn and(self, other: Self) -> Self {
779 match (self, other) {
780 // If either is false, the expression is false.
781 (Some(false), _) | (_, Some(false)) => Some(false),
782 // If both are true, the expression is true.
783 (Some(true), Some(true)) => Some(true),
784 // One or both are unknown -- the result is unknown.
785 _ => None,
786 }
787 }
788
789 #[inline]
790 fn or(self, other: Self) -> Self {
791 match (self, other) {
792 // If either is true, the expression is true.
793 (Some(true), _) | (_, Some(true)) => Some(true),
794 // If both are false, the expression is false.
795 (Some(false), Some(false)) => Some(false),
796 // One or both are unknown -- the result is unknown.
797 _ => None,
798 }
799 }
800
801 #[inline]
802 fn not(self) -> Self {
803 self.map(|v| !v)
804 }
805}