cfg_expr/expr.rs
1pub mod lexer;
2mod parser;
3
4use smallvec::SmallVec;
5use std::ops::Range;
6
7/// A predicate function, used to combine 1 or more predicates
8/// into a single value
9#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
10pub enum Func {
11 /// `not()` with a configuration predicate. It is true if its predicate
12 /// is false and false if its predicate is true.
13 Not,
14 /// `all()` with a comma separated list of configuration predicates. It
15 /// is false if at least one predicate is false. If there are no predicates,
16 /// it is true.
17 ///
18 /// The associated `usize` is the number of predicates inside the `all()`.
19 All(usize),
20 /// `any()` with a comma separated list of configuration predicates. It
21 /// is true if at least one predicate is true. If there are no predicates,
22 /// it is false.
23 ///
24 /// The associated `usize` is the number of predicates inside the `any()`.
25 Any(usize),
26}
27
28use crate::targets as targ;
29
30/// All predicates that pertains to a target, except for `target_feature`
31#[derive(Clone, PartialEq, Eq, Debug)]
32pub enum TargetPredicate {
33 /// [target_abi](https://github.com/rust-lang/rust/issues/80970)
34 Abi(targ::Abi),
35 /// [target_arch](https://doc.rust-lang.org/reference/conditional-compilation.html#target_arch)
36 Arch(targ::Arch),
37 /// [target_endian](https://doc.rust-lang.org/reference/conditional-compilation.html#target_endian)
38 Endian(targ::Endian),
39 /// [target_env](https://doc.rust-lang.org/reference/conditional-compilation.html#target_env)
40 Env(targ::Env),
41 /// [target_family](https://doc.rust-lang.org/reference/conditional-compilation.html#target_family)
42 /// This also applies to the bare [`unix` and `windows`](https://doc.rust-lang.org/reference/conditional-compilation.html#unix-and-windows)
43 /// predicates.
44 Family(targ::Family),
45 /// [target_has_atomic](https://doc.rust-lang.org/reference/conditional-compilation.html#target_has_atomic).
46 HasAtomic(targ::HasAtomic),
47 /// [target_os](https://doc.rust-lang.org/reference/conditional-compilation.html#target_os)
48 Os(targ::Os),
49 /// [panic](https://doc.rust-lang.org/reference/conditional-compilation.html#panic)
50 Panic(targ::Panic),
51 /// [target_pointer_width](https://doc.rust-lang.org/reference/conditional-compilation.html#target_pointer_width)
52 PointerWidth(u8),
53 /// [target_vendor](https://doc.rust-lang.org/reference/conditional-compilation.html#target_vendor)
54 Vendor(targ::Vendor),
55}
56
57pub trait TargetMatcher {
58 fn matches(&self, tp: &TargetPredicate) -> bool;
59}
60
61impl TargetMatcher for targ::TargetInfo {
62 fn matches(&self, tp: &TargetPredicate) -> bool {
63 use TargetPredicate::{
64 Abi, Arch, Endian, Env, Family, HasAtomic, Os, Panic, PointerWidth, Vendor,
65 };
66
67 match tp {
68 // The ABI is allowed to be an empty string
69 Abi(abi) => match &self.abi {
70 Some(a) => abi == a,
71 None => abi.0.is_empty(),
72 },
73 Arch(a) => a == &self.arch,
74 Endian(end) => *end == self.endian,
75 // The environment is allowed to be an empty string
76 Env(env) => match &self.env {
77 Some(e) => env == e,
78 None => env.0.is_empty(),
79 },
80 Family(fam) => self.families.contains(fam),
81 HasAtomic(has_atomic) => self.has_atomics.contains(*has_atomic),
82 Os(os) => match &self.os {
83 Some(self_os) => os == self_os,
84 // os = "none" means it should be matched against None. Note that this is different
85 // from "env" above.
86 None => os.as_str() == "none",
87 },
88 PointerWidth(w) => *w == self.pointer_width,
89 Vendor(ven) => match &self.vendor {
90 Some(v) => ven == v,
91 None => ven == &targ::Vendor::unknown,
92 },
93 Panic(panic) => &self.panic == panic,
94 }
95 }
96}
97
98#[cfg(feature = "targets")]
99impl TargetMatcher for target_lexicon::Triple {
100 #[allow(clippy::cognitive_complexity)]
101 #[allow(clippy::match_same_arms)]
102 fn matches(&self, tp: &TargetPredicate) -> bool {
103 use TargetPredicate::{
104 Abi, Arch, Endian, Env, Family, HasAtomic, Os, Panic, PointerWidth, Vendor,
105 };
106 use target_lexicon::*;
107
108 const NUTTX: target_lexicon::Vendor =
109 target_lexicon::Vendor::Custom(target_lexicon::CustomVendor::Static("nuttx"));
110 const RTEMS: target_lexicon::Vendor =
111 target_lexicon::Vendor::Custom(target_lexicon::CustomVendor::Static("rtems"));
112
113 match tp {
114 Abi(_) => {
115 // `target_abi` is unstable. Assume false for this.
116 false
117 }
118 Arch(arch) => {
119 if arch == &targ::Arch::x86 {
120 matches!(self.architecture, Architecture::X86_32(_))
121 } else if arch == &targ::Arch::wasm32 {
122 self.architecture == Architecture::Wasm32
123 || self.architecture == Architecture::Asmjs
124 } else if arch == &targ::Arch::arm {
125 matches!(self.architecture, Architecture::Arm(_))
126 } else if arch == &targ::Arch::bpf {
127 self.architecture == Architecture::Bpfeb
128 || self.architecture == Architecture::Bpfel
129 } else if arch == &targ::Arch::x86_64 {
130 self.architecture == Architecture::X86_64
131 || self.architecture == Architecture::X86_64h
132 } else if arch == &targ::Arch::mips32r6 {
133 matches!(
134 self.architecture,
135 Architecture::Mips32(
136 Mips32Architecture::Mipsisa32r6 | Mips32Architecture::Mipsisa32r6el
137 )
138 )
139 } else if arch == &targ::Arch::mips64r6 {
140 matches!(
141 self.architecture,
142 Architecture::Mips64(
143 Mips64Architecture::Mipsisa64r6 | Mips64Architecture::Mipsisa64r6el
144 )
145 )
146 } else if arch == &targ::Arch::amdgpu {
147 self.architecture == Architecture::AmdGcn
148 } else {
149 match arch.0.parse::<Architecture>() {
150 Ok(a) => match (self.architecture, a) {
151 (Architecture::Aarch64(_), Architecture::Aarch64(_))
152 | (Architecture::Mips32(_), Architecture::Mips32(_))
153 | (Architecture::Mips64(_), Architecture::Mips64(_))
154 | (Architecture::Powerpc64le, Architecture::Powerpc64)
155 | (Architecture::Riscv32(_), Architecture::Riscv32(_))
156 | (Architecture::Riscv64(_), Architecture::Riscv64(_))
157 | (Architecture::Sparcv9, Architecture::Sparc64) => true,
158 (a, b) => a == b,
159 },
160 Err(_) => false,
161 }
162 }
163 }
164 Endian(end) => match self.architecture.endianness() {
165 Ok(endian) => matches!(
166 (end, endian),
167 (crate::targets::Endian::little, Endianness::Little)
168 | (crate::targets::Endian::big, Endianness::Big)
169 ),
170
171 Err(_) => false,
172 },
173 Env(env) => {
174 // The environment is implied by some operating systems
175 match self.operating_system {
176 OperatingSystem::Redox => env == &targ::Env::relibc,
177 OperatingSystem::VxWorks => env == &targ::Env::gnu,
178 OperatingSystem::Freebsd => env.0.is_empty(),
179 OperatingSystem::Netbsd => match self.architecture {
180 Architecture::Arm(ArmArchitecture::Armv6 | ArmArchitecture::Armv7) => {
181 env.0.is_empty()
182 }
183 _ => env.0.is_empty(),
184 },
185 OperatingSystem::None_
186 | OperatingSystem::Cloudabi
187 | OperatingSystem::Hermit
188 | OperatingSystem::IOS(_) => match self.environment {
189 Environment::LinuxKernel => env == &targ::Env::gnu,
190 _ => env.0.is_empty(),
191 },
192 OperatingSystem::WasiP1 => env == &targ::Env::p1,
193 OperatingSystem::WasiP2 => env == &targ::Env::p2,
194 OperatingSystem::Wasi => env.0.is_empty() || env == &targ::Env::p1,
195 _ => {
196 if env.0.is_empty() {
197 matches!(
198 self.environment,
199 Environment::Unknown
200 | Environment::Android
201 | Environment::Softfloat
202 | Environment::Androideabi
203 | Environment::Eabi
204 | Environment::Eabihf
205 | Environment::Sim
206 | Environment::None
207 )
208 } else {
209 match env.0.parse::<Environment>() {
210 Ok(e) => {
211 // Rustc shortens multiple "gnu*" environments to just "gnu"
212 if env == &targ::Env::gnu {
213 match self.environment {
214 Environment::Gnu
215 | Environment::Gnuabi64
216 | Environment::Gnueabi
217 | Environment::Gnuspe
218 | Environment::Gnux32
219 | Environment::GnuIlp32
220 | Environment::Gnueabihf
221 | Environment::GnuLlvm => true,
222 // Rust 1.49.0 changed all android targets to have the
223 // gnu environment
224 Environment::Android | Environment::Androideabi
225 if self.operating_system
226 == OperatingSystem::Linux =>
227 {
228 true
229 }
230 Environment::Kernel => {
231 self.operating_system == OperatingSystem::Linux
232 }
233 _ => self.architecture == Architecture::Avr,
234 }
235 } else if env == &targ::Env::musl {
236 matches!(
237 self.environment,
238 Environment::Musl
239 | Environment::Musleabi
240 | Environment::Musleabihf
241 | Environment::Muslabi64
242 )
243 } else if env == &targ::Env::uclibc {
244 matches!(
245 self.environment,
246 Environment::Uclibc
247 | Environment::Uclibceabi
248 | Environment::Uclibceabihf
249 )
250 } else if env == &targ::Env::newlib {
251 matches!(
252 self.operating_system,
253 OperatingSystem::Horizon | OperatingSystem::Espidf
254 ) || self.vendor == RTEMS
255 } else {
256 self.environment == e
257 }
258 }
259 Err(_) => false,
260 }
261 }
262 }
263 }
264 }
265 Family(fam) => {
266 use OperatingSystem::{
267 Aix, AmdHsa, Bitrig, Cloudabi, Cuda, Darwin, Dragonfly, Emscripten, Espidf,
268 Freebsd, Fuchsia, Haiku, Hermit, Horizon, Hurd, IOS, Illumos, L4re, Linux,
269 MacOSX, Nebulet, Netbsd, None_, Openbsd, Redox, Solaris, TvOS, Uefi, Unknown,
270 VisionOS, VxWorks, Wasi, WasiP1, WasiP2, WatchOS, Windows,
271 };
272
273 match self.operating_system {
274 AmdHsa | Bitrig | Cloudabi | Cuda | Hermit | Nebulet | None_ | Uefi => false,
275 Aix
276 | Darwin(_)
277 | Dragonfly
278 | Espidf
279 | Freebsd
280 | Fuchsia
281 | Haiku
282 | Hurd
283 | Illumos
284 | IOS(_)
285 | L4re
286 | MacOSX { .. }
287 | Horizon
288 | Netbsd
289 | Openbsd
290 | Redox
291 | Solaris
292 | TvOS(_)
293 | VisionOS(_)
294 | VxWorks
295 | WatchOS(_) => fam == &crate::targets::Family::unix,
296 Emscripten => {
297 match self.architecture {
298 // asmjs, wasm32 and wasm64 are part of both the wasm and unix families
299 Architecture::Asmjs | Architecture::Wasm32 => {
300 fam == &crate::targets::Family::wasm
301 || fam == &crate::targets::Family::unix
302 }
303 _ => false,
304 }
305 }
306 Unknown if self.vendor == NUTTX || self.vendor == RTEMS => {
307 fam == &crate::targets::Family::unix
308 }
309 Unknown => {
310 // asmjs, wasm32 and wasm64 are part of the wasm family.
311 match self.architecture {
312 Architecture::Asmjs | Architecture::Wasm32 | Architecture::Wasm64 => {
313 fam == &crate::targets::Family::wasm
314 }
315 _ => false,
316 }
317 }
318 Linux => {
319 // The 'kernel' environment is treated specially as not-unix
320 if self.environment != Environment::Kernel {
321 fam == &crate::targets::Family::unix
322 } else {
323 false
324 }
325 }
326 Wasi | WasiP1 | WasiP2 => fam == &crate::targets::Family::wasm,
327 Windows => fam == &crate::targets::Family::windows,
328 // I really dislike non-exhaustive :(
329 _ => false,
330 }
331 }
332 HasAtomic(_) => {
333 // atomic support depends on both the architecture and the OS. Assume false for
334 // this.
335 false
336 }
337 Os(os) => {
338 if os == &targ::Os::wasi
339 && matches!(
340 self.operating_system,
341 OperatingSystem::WasiP1 | OperatingSystem::WasiP2
342 )
343 || (os == &targ::Os::nuttx && self.vendor == NUTTX)
344 || (os == &targ::Os::rtems && self.vendor == RTEMS)
345 {
346 return true;
347 }
348
349 match os.0.parse::<OperatingSystem>() {
350 Ok(o) => match self.environment {
351 Environment::HermitKernel => os == &targ::Os::hermit,
352 _ => self.operating_system == o,
353 },
354 Err(_) => {
355 // Handle special case for darwin/macos, where the triple is
356 // "darwin", but rustc identifies the OS as "macos"
357 if os == &targ::Os::macos
358 && matches!(self.operating_system, OperatingSystem::Darwin(_))
359 {
360 true
361 } else {
362 // For android, the os is still linux, but the environment is android
363 os == &targ::Os::android
364 && self.operating_system == OperatingSystem::Linux
365 && (self.environment == Environment::Android
366 || self.environment == Environment::Androideabi)
367 }
368 }
369 }
370 }
371 Panic(_) => {
372 // panic support depends on the OS. Assume false for this.
373 false
374 }
375 Vendor(ven) => match ven.0.parse::<target_lexicon::Vendor>() {
376 Ok(v) => {
377 if self.vendor == v
378 || ((self.vendor == NUTTX || self.vendor == RTEMS)
379 && ven == &targ::Vendor::unknown)
380 {
381 true
382 } else if let target_lexicon::Vendor::Custom(custom) = &self.vendor {
383 matches!(custom.as_str(), "esp" | "esp32" | "esp32s2" | "esp32s3")
384 && (v == target_lexicon::Vendor::Espressif
385 || v == target_lexicon::Vendor::Unknown)
386 } else {
387 false
388 }
389 }
390 Err(_) => false,
391 },
392 PointerWidth(pw) => {
393 // The gnux32 environment is a special case, where it has an
394 // x86_64 architecture, but a 32-bit pointer width
395 if !matches!(
396 self.environment,
397 Environment::Gnux32 | Environment::GnuIlp32
398 ) {
399 *pw == match self.pointer_width() {
400 Ok(pw) => pw.bits(),
401 Err(_) => return false,
402 }
403 } else {
404 *pw == 32
405 }
406 }
407 }
408 }
409}
410
411impl TargetPredicate {
412 /// Returns true of the predicate matches the specified target
413 ///
414 /// Note that when matching against a [`target_lexicon::Triple`], the
415 /// `has_target_atomic` and `panic` predicates will _always_ return `false`.
416 ///
417 /// ```
418 /// use cfg_expr::{targets::*, expr::TargetPredicate as tp};
419 /// let win = get_builtin_target_by_triple("x86_64-pc-windows-msvc").unwrap();
420 ///
421 /// assert!(
422 /// tp::Arch(Arch::x86_64).matches(win) &&
423 /// tp::Endian(Endian::little).matches(win) &&
424 /// tp::Env(Env::msvc).matches(win) &&
425 /// tp::Family(Family::windows).matches(win) &&
426 /// tp::Os(Os::windows).matches(win) &&
427 /// tp::PointerWidth(64).matches(win) &&
428 /// tp::Vendor(Vendor::pc).matches(win)
429 /// );
430 /// ```
431 pub fn matches<T>(&self, target: &T) -> bool
432 where
433 T: TargetMatcher,
434 {
435 target.matches(self)
436 }
437}
438
439#[derive(Clone, Debug)]
440pub(crate) enum Which {
441 Abi,
442 Arch,
443 Endian(targ::Endian),
444 Env,
445 Family,
446 Os,
447 HasAtomic(targ::HasAtomic),
448 Panic,
449 PointerWidth(u8),
450 Vendor,
451}
452
453#[derive(Clone, Debug)]
454pub(crate) struct InnerTarget {
455 which: Which,
456 span: Option<Range<usize>>,
457}
458
459/// A single predicate in a `cfg()` expression
460#[derive(Debug, PartialEq, Eq)]
461pub enum Predicate<'a> {
462 /// A target predicate, with the `target_` prefix
463 Target(TargetPredicate),
464 /// Whether rustc's test harness is [enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#test)
465 Test,
466 /// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#debug_assertions)
467 /// when compiling without optimizations.
468 DebugAssertions,
469 /// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#proc_macro) for
470 /// crates of the `proc_macro` type.
471 ProcMacro,
472 /// A [`feature = "<name>"`](https://doc.rust-lang.org/nightly/cargo/reference/features.html)
473 Feature(&'a str),
474 /// [target_feature](https://doc.rust-lang.org/reference/conditional-compilation.html#target_feature)
475 TargetFeature(&'a str),
476 /// A generic bare predicate key that doesn't match one of the known options, eg `cfg(bare)`
477 Flag(&'a str),
478 /// A generic key = "value" predicate that doesn't match one of the known options, eg `cfg(foo = "bar")`
479 KeyValue { key: &'a str, val: &'a str },
480}
481
482#[derive(Clone, Debug)]
483pub(crate) enum InnerPredicate {
484 Target(InnerTarget),
485 Test,
486 DebugAssertions,
487 ProcMacro,
488 Feature(Range<usize>),
489 TargetFeature(Range<usize>),
490 Other {
491 identifier: Range<usize>,
492 value: Option<Range<usize>>,
493 },
494}
495
496impl InnerPredicate {
497 fn to_pred<'a>(&self, s: &'a str) -> Predicate<'a> {
498 use InnerPredicate as IP;
499 use Predicate::{
500 DebugAssertions, Feature, Flag, KeyValue, ProcMacro, Target, TargetFeature, Test,
501 };
502
503 match self {
504 IP::Target(it) => match &it.which {
505 Which::Abi => Target(TargetPredicate::Abi(targ::Abi::new(
506 s[it.span.clone().unwrap()].to_owned(),
507 ))),
508 Which::Arch => Target(TargetPredicate::Arch(targ::Arch::new(
509 s[it.span.clone().unwrap()].to_owned(),
510 ))),
511 Which::Os => Target(TargetPredicate::Os(targ::Os::new(
512 s[it.span.clone().unwrap()].to_owned(),
513 ))),
514 Which::Vendor => Target(TargetPredicate::Vendor(targ::Vendor::new(
515 s[it.span.clone().unwrap()].to_owned(),
516 ))),
517 Which::Env => Target(TargetPredicate::Env(targ::Env::new(
518 s[it.span.clone().unwrap()].to_owned(),
519 ))),
520 Which::Family => Target(TargetPredicate::Family(targ::Family::new(
521 s[it.span.clone().unwrap()].to_owned(),
522 ))),
523 Which::Endian(end) => Target(TargetPredicate::Endian(*end)),
524 Which::HasAtomic(has_atomic) => Target(TargetPredicate::HasAtomic(*has_atomic)),
525 Which::Panic => Target(TargetPredicate::Panic(targ::Panic::new(
526 s[it.span.clone().unwrap()].to_owned(),
527 ))),
528 Which::PointerWidth(pw) => Target(TargetPredicate::PointerWidth(*pw)),
529 },
530 IP::Test => Test,
531 IP::DebugAssertions => DebugAssertions,
532 IP::ProcMacro => ProcMacro,
533 IP::Feature(rng) => Feature(&s[rng.clone()]),
534 IP::TargetFeature(rng) => TargetFeature(&s[rng.clone()]),
535 IP::Other { identifier, value } => match value {
536 Some(vs) => KeyValue {
537 key: &s[identifier.clone()],
538 val: &s[vs.clone()],
539 },
540 None => Flag(&s[identifier.clone()]),
541 },
542 }
543 }
544}
545
546#[derive(Clone, Debug)]
547pub(crate) enum ExprNode {
548 Fn(Func),
549 Predicate(InnerPredicate),
550}
551
552/// A parsed `cfg()` expression that can evaluated
553#[derive(Clone, Debug)]
554pub struct Expression {
555 pub(crate) expr: SmallVec<[ExprNode; 5]>,
556 // We keep the original string around for providing the arbitrary
557 // strings that can make up an expression
558 pub(crate) original: String,
559}
560
561impl Expression {
562 /// An iterator over each predicate in the expression
563 pub fn predicates(&self) -> impl Iterator<Item = Predicate<'_>> {
564 self.expr.iter().filter_map(move |item| match item {
565 ExprNode::Predicate(pred) => {
566 let pred = pred.clone().to_pred(&self.original);
567 Some(pred)
568 }
569 ExprNode::Fn(_) => None,
570 })
571 }
572
573 /// Evaluates the expression, using the provided closure to determine the value of
574 /// each predicate, which are then combined into a final result depending on the
575 /// functions `not()`, `all()`, or `any()` in the expression.
576 ///
577 /// `eval_predicate` typically returns `bool`, but may return any type that implements
578 /// the `Logic` trait.
579 ///
580 /// ## Examples
581 ///
582 /// ```
583 /// use cfg_expr::{targets::*, Expression, Predicate};
584 ///
585 /// let linux_musl = get_builtin_target_by_triple("x86_64-unknown-linux-musl").unwrap();
586 ///
587 /// let expr = Expression::parse(r#"all(not(windows), target_env = "musl", any(target_arch = "x86", target_arch = "x86_64"))"#).unwrap();
588 ///
589 /// assert!(expr.eval(|pred| {
590 /// match pred {
591 /// Predicate::Target(tp) => tp.matches(linux_musl),
592 /// _ => false,
593 /// }
594 /// }));
595 /// ```
596 ///
597 /// Returning `Option<bool>`, where `None` indicates the result is unknown:
598 ///
599 /// ```
600 /// use cfg_expr::{targets::*, Expression, Predicate};
601 ///
602 /// let expr = Expression::parse(r#"any(target_feature = "sse2", target_env = "musl")"#).unwrap();
603 ///
604 /// let linux_gnu = get_builtin_target_by_triple("x86_64-unknown-linux-gnu").unwrap();
605 /// let linux_musl = get_builtin_target_by_triple("x86_64-unknown-linux-musl").unwrap();
606 ///
607 /// fn eval(expr: &Expression, target: &TargetInfo) -> Option<bool> {
608 /// expr.eval(|pred| {
609 /// match pred {
610 /// Predicate::Target(tp) => Some(tp.matches(target)),
611 /// Predicate::TargetFeature(_) => None,
612 /// _ => panic!("unexpected predicate"),
613 /// }
614 /// })
615 /// }
616 ///
617 /// // Whether the target feature is present is unknown, so the whole expression evaluates to
618 /// // None (unknown).
619 /// assert_eq!(eval(&expr, linux_gnu), None);
620 ///
621 /// // Whether the target feature is present is irrelevant for musl, since the any() always
622 /// // evaluates to true.
623 /// assert_eq!(eval(&expr, linux_musl), Some(true));
624 /// ```
625 pub fn eval<EP, T>(&self, mut eval_predicate: EP) -> T
626 where
627 EP: FnMut(&Predicate<'_>) -> T,
628 T: Logic + std::fmt::Debug,
629 {
630 let mut result_stack = SmallVec::<[T; 8]>::new();
631
632 // We store the expression as postfix, so just evaluate each component
633 // requirement in the order it comes, and then combining the previous
634 // results according to each operator as it comes
635 for node in self.expr.iter() {
636 match node {
637 ExprNode::Predicate(pred) => {
638 let pred = pred.to_pred(&self.original);
639
640 result_stack.push(eval_predicate(&pred));
641 }
642 ExprNode::Fn(Func::All(count)) => {
643 // all() with a comma separated list of configuration predicates.
644 let mut result = T::top();
645
646 for _ in 0..*count {
647 let r = result_stack.pop().unwrap();
648 result = result.and(r);
649 }
650
651 result_stack.push(result);
652 }
653 ExprNode::Fn(Func::Any(count)) => {
654 // any() with a comma separated list of configuration predicates.
655 let mut result = T::bottom();
656
657 for _ in 0..*count {
658 let r = result_stack.pop().unwrap();
659 result = result.or(r);
660 }
661
662 result_stack.push(result);
663 }
664 ExprNode::Fn(Func::Not) => {
665 // not() with a configuration predicate.
666 // It is true if its predicate is false
667 // and false if its predicate is true.
668 let r = result_stack.pop().unwrap();
669 result_stack.push(r.not());
670 }
671 }
672 }
673
674 result_stack.pop().unwrap()
675 }
676
677 /// The original string which has been parsed to produce this [`Expression`].
678 ///
679 /// ```
680 /// use cfg_expr::Expression;
681 ///
682 /// assert_eq!(
683 /// Expression::parse("any()").unwrap().original(),
684 /// "any()"
685 /// );
686 /// ```
687 #[inline]
688 pub fn original(&self) -> &str {
689 &self.original
690 }
691}
692
693/// [`PartialEq`] will do a **syntactical** comparison, so will just check if both
694/// expressions have been parsed from the same string, **not** if they are semantically
695/// equivalent.
696///
697/// ```
698/// use cfg_expr::Expression;
699///
700/// assert_eq!(
701/// Expression::parse("any()").unwrap(),
702/// Expression::parse("any()").unwrap()
703/// );
704/// assert_ne!(
705/// Expression::parse("any()").unwrap(),
706/// Expression::parse("unix").unwrap()
707/// );
708/// ```
709impl PartialEq for Expression {
710 fn eq(&self, other: &Self) -> bool {
711 self.original.eq(&other.original)
712 }
713}
714
715/// A propositional logic used to evaluate `Expression` instances.
716///
717/// An `Expression` consists of some predicates and the `any`, `all` and `not` operators. An
718/// implementation of `Logic` defines how the `any`, `all` and `not` operators should be evaluated.
719pub trait Logic {
720 /// The result of an `all` operation with no operands, akin to Boolean `true`.
721 fn top() -> Self;
722
723 /// The result of an `any` operation with no operands, akin to Boolean `false`.
724 fn bottom() -> Self;
725
726 /// `AND`, which corresponds to the `all` operator.
727 fn and(self, other: Self) -> Self;
728
729 /// `OR`, which corresponds to the `any` operator.
730 fn or(self, other: Self) -> Self;
731
732 /// `NOT`, which corresponds to the `not` operator.
733 fn not(self) -> Self;
734}
735
736/// A boolean logic.
737impl Logic for bool {
738 #[inline]
739 fn top() -> Self {
740 true
741 }
742
743 #[inline]
744 fn bottom() -> Self {
745 false
746 }
747
748 #[inline]
749 fn and(self, other: Self) -> Self {
750 self && other
751 }
752
753 #[inline]
754 fn or(self, other: Self) -> Self {
755 self || other
756 }
757
758 #[inline]
759 fn not(self) -> Self {
760 !self
761 }
762}
763
764/// A three-valued logic -- `None` stands for the value being unknown.
765///
766/// The truth tables for this logic are described on
767/// [Wikipedia](https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics).
768impl Logic for Option<bool> {
769 #[inline]
770 fn top() -> Self {
771 Some(true)
772 }
773
774 #[inline]
775 fn bottom() -> Self {
776 Some(false)
777 }
778
779 #[inline]
780 fn and(self, other: Self) -> Self {
781 match (self, other) {
782 // If either is false, the expression is false.
783 (Some(false), _) | (_, Some(false)) => Some(false),
784 // If both are true, the expression is true.
785 (Some(true), Some(true)) => Some(true),
786 // One or both are unknown -- the result is unknown.
787 _ => None,
788 }
789 }
790
791 #[inline]
792 fn or(self, other: Self) -> Self {
793 match (self, other) {
794 // If either is true, the expression is true.
795 (Some(true), _) | (_, Some(true)) => Some(true),
796 // If both are false, the expression is false.
797 (Some(false), Some(false)) => Some(false),
798 // One or both are unknown -- the result is unknown.
799 _ => None,
800 }
801 }
802
803 #[inline]
804 fn not(self) -> Self {
805 self.map(|v| !v)
806 }
807}