1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// Copyright 2014 The CGMath Developers. For a full listing of the authors,
// refer to the Cargo.toml file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use structure::*;

use approx::ApproxEq;
use matrix::{Matrix2, Matrix3, Matrix4};
use num::{BaseFloat, BaseNum};
use point::{Point2, Point3};
use rotation::*;
use vector::{Vector2, Vector3};

/// A trait representing an [affine
/// transformation](https://en.wikipedia.org/wiki/Affine_transformation) that
/// can be applied to points or vectors. An affine transformation is one which
pub trait Transform<P: EuclideanSpace>: Sized {
    /// Create an identity transformation. That is, a transformation which
    /// does nothing.
    fn one() -> Self;

    /// Create a transformation that rotates a vector to look at `center` from
    /// `eye`, using `up` for orientation.
    fn look_at(eye: P, center: P, up: P::Diff) -> Self;

    /// Transform a vector using this transform.
    fn transform_vector(&self, vec: P::Diff) -> P::Diff;

    /// Transform a point using this transform.
    fn transform_point(&self, point: P) -> P;

    /// Combine this transform with another, yielding a new transformation
    /// which has the effects of both.
    fn concat(&self, other: &Self) -> Self;

    /// Create a transform that "un-does" this one.
    fn inverse_transform(&self) -> Option<Self>;

    /// Combine this transform with another, in-place.
    #[inline]
    fn concat_self(&mut self, other: &Self) {
        *self = Self::concat(self, other);
    }
}

/// A generic transformation consisting of a rotation,
/// displacement vector and scale amount.
#[derive(Copy, Clone, Debug)]
pub struct Decomposed<V: VectorSpace, R> {
    pub scale: V::Scalar,
    pub rot: R,
    pub disp: V,
}

impl<P: EuclideanSpace, R: Rotation<P>> Transform<P> for Decomposed<P::Diff, R>
    where P::Scalar: BaseFloat,
          // FIXME: Investigate why this is needed!
          P::Diff: VectorSpace
{
    #[inline]
    fn one() -> Decomposed<P::Diff, R> {
        Decomposed {
            scale: P::Scalar::one(),
            rot: R::one(),
            disp: P::Diff::zero(),
        }
    }

    #[inline]
    fn look_at(eye: P, center: P, up: P::Diff) -> Decomposed<P::Diff, R> {
        let rot = R::look_at(center - eye, up);
        let disp = rot.rotate_vector(P::origin() - eye);
        Decomposed {
            scale: P::Scalar::one(),
            rot: rot,
            disp: disp,
        }
    }

    #[inline]
    fn transform_vector(&self, vec: P::Diff) -> P::Diff {
        self.rot.rotate_vector(vec * self.scale)
    }

    #[inline]
    fn transform_point(&self, point: P) -> P {
        self.rot.rotate_point(point * self.scale) + self.disp
    }

    fn concat(&self, other: &Decomposed<P::Diff, R>) -> Decomposed<P::Diff, R> {
        Decomposed {
            scale: self.scale * other.scale,
            rot: self.rot * other.rot,
            disp: self.rot.rotate_vector(other.disp * self.scale) + self.disp,
        }
    }

    fn inverse_transform(&self) -> Option<Decomposed<P::Diff, R>> {
        if ulps_eq!(self.scale, &P::Scalar::zero()) {
            None
        } else {
            let s = P::Scalar::one() / self.scale;
            let r = self.rot.invert();
            let d = r.rotate_vector(self.disp.clone()) * -s;
            Some(Decomposed {
                     scale: s,
                     rot: r,
                     disp: d,
                 })
        }
    }
}

pub trait Transform2<S: BaseNum>: Transform<Point2<S>> + Into<Matrix3<S>> {}
pub trait Transform3<S: BaseNum>: Transform<Point3<S>> + Into<Matrix4<S>> {}

impl<S: BaseFloat, R: Rotation2<S>> From<Decomposed<Vector2<S>, R>> for Matrix3<S> {
    fn from(dec: Decomposed<Vector2<S>, R>) -> Matrix3<S> {
        let m: Matrix2<_> = dec.rot.into();
        let mut m: Matrix3<_> = (&m * dec.scale).into();
        m.z = dec.disp.extend(S::one());
        m
    }
}

impl<S: BaseFloat, R: Rotation3<S>> From<Decomposed<Vector3<S>, R>> for Matrix4<S> {
    fn from(dec: Decomposed<Vector3<S>, R>) -> Matrix4<S> {
        let m: Matrix3<_> = dec.rot.into();
        let mut m: Matrix4<_> = (&m * dec.scale).into();
        m.w = dec.disp.extend(S::one());
        m
    }
}

impl<S: BaseFloat, R: Rotation2<S>> Transform2<S> for Decomposed<Vector2<S>, R> {}

impl<S: BaseFloat, R: Rotation3<S>> Transform3<S> for Decomposed<Vector3<S>, R> {}

impl<S: VectorSpace, R, E: BaseFloat> ApproxEq for Decomposed<S, R>
    where S: ApproxEq<Epsilon = E>,
          S::Scalar: ApproxEq<Epsilon = E>,
          R: ApproxEq<Epsilon = E>
{
    type Epsilon = E;

    #[inline]
    fn default_epsilon() -> E {
        E::default_epsilon()
    }

    #[inline]
    fn default_max_relative() -> E {
        E::default_max_relative()
    }

    #[inline]
    fn default_max_ulps() -> u32 {
        E::default_max_ulps()
    }

    #[inline]
    fn relative_eq(&self, other: &Self, epsilon: E, max_relative: E) -> bool {
        S::Scalar::relative_eq(&self.scale, &other.scale, epsilon, max_relative) &&
        R::relative_eq(&self.rot, &other.rot, epsilon, max_relative) &&
        S::relative_eq(&self.disp, &other.disp, epsilon, max_relative)
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: E, max_ulps: u32) -> bool {
        S::Scalar::ulps_eq(&self.scale, &other.scale, epsilon, max_ulps) &&
        R::ulps_eq(&self.rot, &other.rot, epsilon, max_ulps) &&
        S::ulps_eq(&self.disp, &other.disp, epsilon, max_ulps)
    }
}

#[cfg(feature = "eders")]
#[doc(hidden)]
mod eders_ser {
    use structure::VectorSpace;
    use super::Decomposed;
    use serde::{self, Serialize};
    use serde::ser::SerializeStruct;

    impl<V, R> Serialize for Decomposed<V, R>
        where V: Serialize + VectorSpace,
              V::Scalar: Serialize,
              R: Serialize
    {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
            where S: serde::Serializer
        {
            let mut struc = serializer.serialize_struct("Decomposed", 3)?;
            struc.serialize_field("scale", &self.scale)?;
            struc.serialize_field("rot", &self.rot)?;
            struc.serialize_field("disp", &self.disp)?;
            struc.end()
        }
    }
}

#[cfg(feature = "eders")]
#[doc(hidden)]
mod eders_de {
    use structure::VectorSpace;
    use super::Decomposed;
    use serde::{self, Deserialize};
    use std::marker::PhantomData;
    use std::fmt;

    enum DecomposedField {
        Scale,
        Rot,
        Disp,
    }

    impl<'a> Deserialize<'a> for DecomposedField {
        fn deserialize<D>(deserializer: D) -> Result<DecomposedField, D::Error>
            where D: serde::Deserializer<'a>
        {
            struct DecomposedFieldVisitor;

            impl<'b> serde::de::Visitor<'b> for DecomposedFieldVisitor {
                type Value = DecomposedField;

                fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
                    formatter.write_str("`scale`, `rot` or `disp`")
                }

                fn visit_str<E>(self, value: &str) -> Result<DecomposedField, E>
                    where E: serde::de::Error
                {
                    match value {
                        "scale" => Ok(DecomposedField::Scale),
                        "rot" => Ok(DecomposedField::Rot),
                        "disp" => Ok(DecomposedField::Disp),
                        _ => Err(serde::de::Error::custom("expected scale, rot or disp")),
                    }
                }
            }

            deserializer.deserialize_str(DecomposedFieldVisitor)
        }
    }

    impl<'a, S: VectorSpace, R> Deserialize<'a> for Decomposed<S, R>
        where S: Deserialize<'a>,
              S::Scalar: Deserialize<'a>,
              R: Deserialize<'a>
    {
        fn deserialize<D>(deserializer: D) -> Result<Decomposed<S, R>, D::Error>
            where D: serde::de::Deserializer<'a>
        {
            const FIELDS: &'static [&'static str] = &["scale", "rot", "disp"];
            deserializer.deserialize_struct("Decomposed", FIELDS, DecomposedVisitor(PhantomData))
        }
    }

    struct DecomposedVisitor<S: VectorSpace, R>(PhantomData<(S, R)>);

    impl<'a, S: VectorSpace, R> serde::de::Visitor<'a> for DecomposedVisitor<S, R>
        where S: Deserialize<'a>,
              S::Scalar: Deserialize<'a>,
              R: Deserialize<'a>
    {
        type Value = Decomposed<S, R>;

        fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
            formatter.write_str("`scale`, `rot` and `disp` fields")
        }

        fn visit_map<V>(self, mut visitor: V) -> Result<Decomposed<S, R>, V::Error>
            where V: serde::de::MapAccess<'a>
        {
            let mut scale = None;
            let mut rot = None;
            let mut disp = None;

            while let Some(key) = visitor.next_key()? {
                match key {
                    DecomposedField::Scale => {
                        scale = Some(visitor.next_value()?);
                    }
                    DecomposedField::Rot => {
                        rot = Some(visitor.next_value()?);
                    }
                    DecomposedField::Disp => {
                        disp = Some(visitor.next_value()?);
                    }
                }
            }

            let scale = match scale {
                Some(scale) => scale,
                None => return Err(serde::de::Error::missing_field("scale")),
            };

            let rot = match rot {
                Some(rot) => rot,
                None => return Err(serde::de::Error::missing_field("rot")),
            };

            let disp = match disp {
                Some(disp) => disp,
                None => return Err(serde::de::Error::missing_field("disp")),
            };

            Ok(Decomposed {
                   scale: scale,
                   rot: rot,
                   disp: disp,
               })
        }
    }
}