1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
// Copyright 2014 The CGMath Developers. For a full listing of the authors,
// refer to the Cargo.toml file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::fmt;
use std::iter;
use std::ops::*;

use structure::*;

use angle::Rad;
use approx::ApproxEq;
use euler::Euler;
use matrix::{Matrix2, Matrix3};
use num::BaseFloat;
use point::{Point2, Point3};
use quaternion::Quaternion;
use vector::{Vector2, Vector3};

/// A trait for a generic rotation. A rotation is a transformation that
/// creates a circular motion, and preserves at least one point in the space.
pub trait Rotation<P: EuclideanSpace>: Sized + Copy + One where
    // FIXME: Ugly type signatures - blocked by rust-lang/rust#24092
    Self: ApproxEq<Epsilon = P::Scalar>,
    P::Scalar: BaseFloat,
    Self: iter::Product<Self>,
{
    /// Create a rotation to a given direction with an 'up' vector.
    fn look_at(dir: P::Diff, up: P::Diff) -> Self;

    /// Create a shortest rotation to transform vector 'a' into 'b'.
    /// Both given vectors are assumed to have unit length.
    fn between_vectors(a: P::Diff, b: P::Diff) -> Self;

    /// Rotate a vector using this rotation.
    fn rotate_vector(&self, vec: P::Diff) -> P::Diff;

    /// Rotate a point using this rotation, by converting it to its
    /// representation as a vector.
    #[inline]
    fn rotate_point(&self, point: P) -> P {
        P::from_vec(self.rotate_vector(point.to_vec()))
    }

    /// Create a new rotation which "un-does" this rotation. That is,
    /// `r * r.invert()` is the identity.
    fn invert(&self) -> Self;
}

/// A two-dimensional rotation.
pub trait Rotation2<S: BaseFloat>: Rotation<Point2<S>>
                                 + Into<Matrix2<S>>
                                 + Into<Basis2<S>> {
    /// Create a rotation by a given angle. Thus is a redundant case of both
    /// from_axis_angle() and from_euler() for 2D space.
    fn from_angle<A: Into<Rad<S>>>(theta: A) -> Self;
}

/// A three-dimensional rotation.
pub trait Rotation3<S: BaseFloat>: Rotation<Point3<S>>
                                 + Into<Matrix3<S>>
                                 + Into<Basis3<S>>
                                 + Into<Quaternion<S>>
                                 + From<Euler<Rad<S>>> {
    /// Create a rotation using an angle around a given axis.
    ///
    /// The specified axis **must be normalized**, or it represents an invalid rotation.
    fn from_axis_angle<A: Into<Rad<S>>>(axis: Vector3<S>, angle: A) -> Self;

    /// Create a rotation from an angle around the `x` axis (pitch).
    #[inline]
    fn from_angle_x<A: Into<Rad<S>>>(theta: A) -> Self {
        Rotation3::from_axis_angle(Vector3::unit_x(), theta)
    }

    /// Create a rotation from an angle around the `y` axis (yaw).
    #[inline]
    fn from_angle_y<A: Into<Rad<S>>>(theta: A) -> Self {
        Rotation3::from_axis_angle(Vector3::unit_y(), theta)
    }

    /// Create a rotation from an angle around the `z` axis (roll).
    #[inline]
    fn from_angle_z<A: Into<Rad<S>>>(theta: A) -> Self {
        Rotation3::from_axis_angle(Vector3::unit_z(), theta)
    }
}


/// A two-dimensional rotation matrix.
///
/// The matrix is guaranteed to be orthogonal, so some operations can be
/// implemented more efficiently than the implementations for `math::Matrix2`. To
/// enforce orthogonality at the type level the operations have been restricted
/// to a subset of those implemented on `Matrix2`.
///
/// ## Example
///
/// Suppose we want to rotate a vector that lies in the x-y plane by some
/// angle. We can accomplish this quite easily with a two-dimensional rotation
/// matrix:
///
/// ```no_run
/// use cgmath::Rad;
/// use cgmath::Vector2;
/// use cgmath::{Matrix, Matrix2};
/// use cgmath::{Rotation, Rotation2, Basis2};
/// use cgmath::ApproxEq;
/// use std::f64;
///
/// // For simplicity, we will rotate the unit x vector to the unit y vector --
/// // so the angle is 90 degrees, or π/2.
/// let unit_x: Vector2<f64> = Vector2::unit_x();
/// let rot: Basis2<f64> = Rotation2::from_angle(Rad(0.5f64 * f64::consts::PI));
///
/// // Rotate the vector using the two-dimensional rotation matrix:
/// let unit_y = rot.rotate_vector(unit_x);
///
/// // Since sin(π/2) may not be exactly zero due to rounding errors, we can
/// // use approx's assert_ulps_eq!() feature to show that it is close enough.
/// // assert_ulps_eq!(&unit_y, &Vector2::unit_y()); // TODO: Figure out how to use this
///
/// // This is exactly equivalent to using the raw matrix itself:
/// let unit_y2: Matrix2<_> = rot.into();
/// let unit_y2 = unit_y2 * unit_x;
/// assert_eq!(unit_y2, unit_y);
///
/// // Note that we can also concatenate rotations:
/// let rot_half: Basis2<f64> = Rotation2::from_angle(Rad(0.25f64 * f64::consts::PI));
/// let unit_y3 = (rot_half * rot_half).rotate_vector(unit_x);
/// // assert_ulps_eq!(&unit_y3, &unit_y2); // TODO: Figure out how to use this
/// ```
#[derive(PartialEq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Basis2<S> {
    mat: Matrix2<S>
}

impl<S: BaseFloat> AsRef<Matrix2<S>> for Basis2<S> {
    #[inline]
    fn as_ref(&self) -> &Matrix2<S> {
        &self.mat
    }
}

impl<S: BaseFloat> From<Basis2<S>> for Matrix2<S> {
    #[inline]
    fn from(b: Basis2<S>) -> Matrix2<S> { b.mat }
}

impl<S: BaseFloat> iter::Product<Basis2<S>> for Basis2<S> {
    #[inline]
    fn product<I: Iterator<Item=Basis2<S>>>(iter: I) -> Basis2<S> {
        iter.fold(Basis2::one(), Mul::mul)
    }
}

impl<'a, S: 'a + BaseFloat> iter::Product<&'a Basis2<S>> for Basis2<S> {
    #[inline]
    fn product<I: Iterator<Item=&'a Basis2<S>>>(iter: I) -> Basis2<S> {
        iter.fold(Basis2::one(), Mul::mul)
    }
}

impl<S: BaseFloat> Rotation<Point2<S>> for Basis2<S> {
    #[inline]
    fn look_at(dir: Vector2<S>, up: Vector2<S>) -> Basis2<S> {
        Basis2 { mat: Matrix2::look_at(dir, up) }
    }

    #[inline]
    fn between_vectors(a: Vector2<S>, b: Vector2<S>) -> Basis2<S> {
        Rotation2::from_angle(Rad::acos(a.dot(b)) )
    }

    #[inline]
    fn rotate_vector(&self, vec: Vector2<S>) -> Vector2<S> { self.mat * vec }

    // TODO: we know the matrix is orthogonal, so this could be re-written
    // to be faster
    #[inline]
    fn invert(&self) -> Basis2<S> { Basis2 { mat: self.mat.invert().unwrap() } }
}

impl<S: BaseFloat> One for Basis2<S> {
    #[inline]
    fn one() -> Basis2<S> { Basis2 { mat: Matrix2::one() } }
}

impl_operator!(<S: BaseFloat> Mul<Basis2<S> > for Basis2<S> {
    fn mul(lhs, rhs) -> Basis2<S> { Basis2 { mat: lhs.mat * rhs.mat  } }
});

impl<S: BaseFloat> ApproxEq for Basis2<S> {
    type Epsilon = S::Epsilon;

    #[inline]
    fn default_epsilon() -> S::Epsilon {
        S::default_epsilon()
    }

    #[inline]
    fn default_max_relative() -> S::Epsilon {
        S::default_max_relative()
    }

    #[inline]
    fn default_max_ulps() -> u32 {
        S::default_max_ulps()
    }

    #[inline]
    fn relative_eq(&self, other: &Self, epsilon: S::Epsilon, max_relative: S::Epsilon) -> bool {
        Matrix2::relative_eq(&self.mat, &other.mat, epsilon, max_relative)
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: S::Epsilon, max_ulps: u32) -> bool {
        Matrix2::ulps_eq(&self.mat, &other.mat, epsilon, max_ulps)
    }
}

impl<S: BaseFloat> Rotation2<S> for Basis2<S> {
    fn from_angle<A: Into<Rad<S>>>(theta: A) -> Basis2<S> { Basis2 { mat: Matrix2::from_angle(theta) } }
}

impl<S: fmt::Debug> fmt::Debug for Basis2<S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        try!(write!(f, "Basis2 "));
        <[[S; 2]; 2] as fmt::Debug>::fmt(self.mat.as_ref(), f)
    }
}

/// A three-dimensional rotation matrix.
///
/// The matrix is guaranteed to be orthogonal, so some operations, specifically
/// inversion, can be implemented more efficiently than the implementations for
/// `math::Matrix3`. To ensure orthogonality is maintained, the operations have
/// been restricted to a subset of those implemented on `Matrix3`.
#[derive(PartialEq, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Basis3<S> {
    mat: Matrix3<S>
}

impl<S: BaseFloat> Basis3<S> {
    /// Create a new rotation matrix from a quaternion.
    #[inline]
    pub fn from_quaternion(quaternion: &Quaternion<S>) -> Basis3<S> {
        Basis3 { mat: quaternion.clone().into() }
    }
}

impl<S> AsRef<Matrix3<S>> for Basis3<S> {
    #[inline]
    fn as_ref(&self) -> &Matrix3<S> {
        &self.mat
    }
}

impl<S: BaseFloat> From<Basis3<S>> for Matrix3<S> {
    #[inline]
    fn from(b: Basis3<S>) -> Matrix3<S> { b.mat }
}

impl<S: BaseFloat> From<Basis3<S>> for Quaternion<S> {
    #[inline]
    fn from(b: Basis3<S>) -> Quaternion<S> { b.mat.into() }
}

impl<S: BaseFloat> iter::Product<Basis3<S>> for Basis3<S> {
    #[inline]
    fn product<I: Iterator<Item=Basis3<S>>>(iter: I) -> Basis3<S> {
        iter.fold(Basis3::one(), Mul::mul)
    }
}

impl<'a, S: 'a + BaseFloat> iter::Product<&'a Basis3<S>> for Basis3<S> {
    #[inline]
    fn product<I: Iterator<Item=&'a Basis3<S>>>(iter: I) -> Basis3<S> {
        iter.fold(Basis3::one(), Mul::mul)
    }
}

impl<S: BaseFloat> Rotation<Point3<S>> for Basis3<S> {
    #[inline]
    fn look_at(dir: Vector3<S>, up: Vector3<S>) -> Basis3<S> {
        Basis3 { mat: Matrix3::look_at(dir, up) }
    }

    #[inline]
    fn between_vectors(a: Vector3<S>, b: Vector3<S>) -> Basis3<S> {
        let q: Quaternion<S> = Rotation::between_vectors(a, b);
        q.into()
    }

    #[inline]
    fn rotate_vector(&self, vec: Vector3<S>) -> Vector3<S> { self.mat * vec }

    // TODO: we know the matrix is orthogonal, so this could be re-written
    // to be faster
    #[inline]
    fn invert(&self) -> Basis3<S> { Basis3 { mat: self.mat.invert().unwrap() } }
}

impl<S: BaseFloat> One for Basis3<S> {
    #[inline]
    fn one() -> Basis3<S> { Basis3 { mat: Matrix3::one() } }
}

impl_operator!(<S: BaseFloat> Mul<Basis3<S> > for Basis3<S> {
    fn mul(lhs, rhs) -> Basis3<S> { Basis3 { mat: lhs.mat * rhs.mat  } }
});

impl<S: BaseFloat> ApproxEq for Basis3<S> {
    type Epsilon = S::Epsilon;

    #[inline]
    fn default_epsilon() -> S::Epsilon {
        S::default_epsilon()
    }

    #[inline]
    fn default_max_relative() -> S::Epsilon {
        S::default_max_relative()
    }

    #[inline]
    fn default_max_ulps() -> u32 {
        S::default_max_ulps()
    }

    #[inline]
    fn relative_eq(&self, other: &Self, epsilon: S::Epsilon, max_relative: S::Epsilon) -> bool {
        Matrix3::relative_eq(&self.mat, &other.mat, epsilon, max_relative)
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: S::Epsilon, max_ulps: u32) -> bool {
        Matrix3::ulps_eq(&self.mat, &other.mat, epsilon, max_ulps)
    }
}

impl<S: BaseFloat> Rotation3<S> for Basis3<S> {
    fn from_axis_angle<A: Into<Rad<S>>>(axis: Vector3<S>, angle: A) -> Basis3<S> {
        Basis3 { mat: Matrix3::from_axis_angle(axis, angle) }
    }

    fn from_angle_x<A: Into<Rad<S>>>(theta: A) -> Basis3<S> {
        Basis3 { mat: Matrix3::from_angle_x(theta) }
    }

    fn from_angle_y<A: Into<Rad<S>>>(theta: A) -> Basis3<S> {
        Basis3 { mat: Matrix3::from_angle_y(theta) }
    }

    fn from_angle_z<A: Into<Rad<S>>>(theta: A) -> Basis3<S> {
        Basis3 { mat: Matrix3::from_angle_z(theta) }
    }
}

impl<A: Angle> From<Euler<A>> for Basis3<A::Unitless> where
    A: Into<Rad<<A as Angle>::Unitless>>,
{
    /// Create a three-dimensional rotation matrix from a set of euler angles.
    fn from(src: Euler<A>) -> Basis3<A::Unitless> {
        Basis3 {
            mat: Matrix3::from(src),
        }
    }
}

impl<S: fmt::Debug> fmt::Debug for Basis3<S> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        try!(write!(f, "Basis3 "));
        <[[S; 3]; 3] as fmt::Debug>::fmt(self.mat.as_ref(), f)
    }
}