use num_traits::{Bounded, Float, NumCast};
#[cfg(feature = "rand")]
use rand::{
distributions::{Distribution, Standard},
Rng,
};
use std::fmt;
use std::iter;
use std::mem;
use std::ops::*;
use structure::*;
use angle::Rad;
use approx;
use num::{BaseFloat, BaseNum};
#[cfg(feature = "mint")]
use mint;
#[repr(C)]
#[derive(PartialEq, Eq, Copy, Clone, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Vector1<S> {
pub x: S,
}
#[repr(C)]
#[derive(PartialEq, Eq, Copy, Clone, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Vector2<S> {
pub x: S,
pub y: S,
}
#[repr(C)]
#[derive(PartialEq, Eq, Copy, Clone, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Vector3<S> {
pub x: S,
pub y: S,
pub z: S,
}
#[repr(C)]
#[derive(PartialEq, Eq, Copy, Clone, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Vector4<S> {
pub x: S,
pub y: S,
pub z: S,
pub w: S,
}
macro_rules! impl_vector {
($VectorN:ident { $($field:ident),+ }, $n:expr, $constructor:ident) => {
impl<S> $VectorN<S> {
#[inline]
pub const fn new($($field: S),+) -> $VectorN<S> {
$VectorN { $($field: $field),+ }
}
#[inline]
pub fn map<U, F>(self, mut f: F) -> $VectorN<U>
where F: FnMut(S) -> U
{
$VectorN { $($field: f(self.$field)),+ }
}
#[inline]
pub fn zip<S2, S3, F>(self, v2: $VectorN<S2>, mut f: F) -> $VectorN<S3>
where F: FnMut(S, S2) -> S3
{
$VectorN { $($field: f(self.$field, v2.$field)),+ }
}
}
#[inline]
pub const fn $constructor<S>($($field: S),+) -> $VectorN<S> {
$VectorN::new($($field),+)
}
impl<S: NumCast + Copy> $VectorN<S> {
#[inline]
pub fn cast<T: NumCast>(&self) -> Option<$VectorN<T>> {
$(
let $field = match NumCast::from(self.$field) {
Some(field) => field,
None => return None
};
)+
Some($VectorN { $($field),+ })
}
}
impl<S: BaseNum> MetricSpace for $VectorN<S> {
type Metric = S;
#[inline]
fn distance2(self, other: Self) -> S {
(other - self).magnitude2()
}
}
impl<S: Copy> Array for $VectorN<S> {
type Element = S;
#[inline]
fn len() -> usize {
$n
}
#[inline]
fn from_value(scalar: S) -> $VectorN<S> {
$VectorN { $($field: scalar),+ }
}
#[inline]
fn sum(self) -> S where S: Add<Output = S> {
fold_array!(add, { $(self.$field),+ })
}
#[inline]
fn product(self) -> S where S: Mul<Output = S> {
fold_array!(mul, { $(self.$field),+ })
}
fn is_finite(&self) -> bool where S: Float {
$(self.$field.is_finite())&&+
}
}
impl<S: BaseNum> Zero for $VectorN<S> {
#[inline]
fn zero() -> $VectorN<S> {
$VectorN::from_value(S::zero())
}
#[inline]
fn is_zero(&self) -> bool {
*self == $VectorN::zero()
}
}
impl<S: BaseNum> iter::Sum<$VectorN<S>> for $VectorN<S> {
#[inline]
fn sum<I: Iterator<Item=$VectorN<S>>>(iter: I) -> $VectorN<S> {
iter.fold($VectorN::zero(), Add::add)
}
}
impl<'a, S: 'a + BaseNum> iter::Sum<&'a $VectorN<S>> for $VectorN<S> {
#[inline]
fn sum<I: Iterator<Item=&'a $VectorN<S>>>(iter: I) -> $VectorN<S> {
iter.fold($VectorN::zero(), Add::add)
}
}
impl<S: BaseNum> VectorSpace for $VectorN<S> {
type Scalar = S;
}
impl<S: Neg<Output = S>> Neg for $VectorN<S> {
type Output = $VectorN<S>;
#[inline]
default_fn!( neg(self) -> $VectorN<S> { $VectorN::new($(-self.$field),+) } );
}
impl<S: BaseFloat> approx::AbsDiffEq for $VectorN<S> {
type Epsilon = S::Epsilon;
#[inline]
fn default_epsilon() -> S::Epsilon {
S::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: S::Epsilon) -> bool {
$(S::abs_diff_eq(&self.$field, &other.$field, epsilon))&&+
}
}
impl<S: BaseFloat> approx::RelativeEq for $VectorN<S> {
#[inline]
fn default_max_relative() -> S::Epsilon {
S::default_max_relative()
}
#[inline]
fn relative_eq(&self, other: &Self, epsilon: S::Epsilon, max_relative: S::Epsilon) -> bool {
$(S::relative_eq(&self.$field, &other.$field, epsilon, max_relative))&&+
}
}
impl<S: BaseFloat> approx::UlpsEq for $VectorN<S> {
#[inline]
fn default_max_ulps() -> u32 {
S::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: S::Epsilon, max_ulps: u32) -> bool {
$(S::ulps_eq(&self.$field, &other.$field, epsilon, max_ulps))&&+
}
}
#[cfg(feature = "rand")]
impl<S> Distribution<$VectorN<S>> for Standard
where Standard: Distribution<S>,
S: BaseFloat {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $VectorN<S> {
$VectorN { $($field: rng.gen()),+ }
}
}
impl<S: Bounded> Bounded for $VectorN<S> {
#[inline]
fn min_value() -> $VectorN<S> {
$VectorN { $($field: S::min_value()),+ }
}
#[inline]
fn max_value() -> $VectorN<S> {
$VectorN { $($field: S::max_value()),+ }
}
}
impl_operator!(<S: BaseNum> Add<$VectorN<S> > for $VectorN<S> {
fn add(lhs, rhs) -> $VectorN<S> { $VectorN::new($(lhs.$field + rhs.$field),+) }
});
impl_assignment_operator!(<S: BaseNum> AddAssign<$VectorN<S> > for $VectorN<S> {
fn add_assign(&mut self, other) { $(self.$field += other.$field);+ }
});
impl_operator!(<S: BaseNum> Sub<$VectorN<S> > for $VectorN<S> {
fn sub(lhs, rhs) -> $VectorN<S> { $VectorN::new($(lhs.$field - rhs.$field),+) }
});
impl_assignment_operator!(<S: BaseNum> SubAssign<$VectorN<S> > for $VectorN<S> {
fn sub_assign(&mut self, other) { $(self.$field -= other.$field);+ }
});
impl_operator!(<S: BaseNum> Mul<S> for $VectorN<S> {
fn mul(vector, scalar) -> $VectorN<S> { $VectorN::new($(vector.$field * scalar),+) }
});
impl_assignment_operator!(<S: BaseNum> MulAssign<S> for $VectorN<S> {
fn mul_assign(&mut self, scalar) { $(self.$field *= scalar);+ }
});
impl_operator!(<S: BaseNum> Div<S> for $VectorN<S> {
fn div(vector, scalar) -> $VectorN<S> { $VectorN::new($(vector.$field / scalar),+) }
});
impl_assignment_operator!(<S: BaseNum> DivAssign<S> for $VectorN<S> {
fn div_assign(&mut self, scalar) { $(self.$field /= scalar);+ }
});
impl_operator!(<S: BaseNum> Rem<S> for $VectorN<S> {
fn rem(vector, scalar) -> $VectorN<S> { $VectorN::new($(vector.$field % scalar),+) }
});
impl_assignment_operator!(<S: BaseNum> RemAssign<S> for $VectorN<S> {
fn rem_assign(&mut self, scalar) { $(self.$field %= scalar);+ }
});
impl<S: BaseNum> ElementWise for $VectorN<S> {
#[inline] default_fn!( add_element_wise(self, rhs: $VectorN<S>) -> $VectorN<S> { $VectorN::new($(self.$field + rhs.$field),+) } );
#[inline] default_fn!( sub_element_wise(self, rhs: $VectorN<S>) -> $VectorN<S> { $VectorN::new($(self.$field - rhs.$field),+) } );
#[inline] default_fn!( mul_element_wise(self, rhs: $VectorN<S>) -> $VectorN<S> { $VectorN::new($(self.$field * rhs.$field),+) } );
#[inline] default_fn!( div_element_wise(self, rhs: $VectorN<S>) -> $VectorN<S> { $VectorN::new($(self.$field / rhs.$field),+) } );
#[inline] fn rem_element_wise(self, rhs: $VectorN<S>) -> $VectorN<S> { $VectorN::new($(self.$field % rhs.$field),+) }
#[inline] default_fn!( add_assign_element_wise(&mut self, rhs: $VectorN<S>) { $(self.$field += rhs.$field);+ } );
#[inline] default_fn!( sub_assign_element_wise(&mut self, rhs: $VectorN<S>) { $(self.$field -= rhs.$field);+ } );
#[inline] default_fn!( mul_assign_element_wise(&mut self, rhs: $VectorN<S>) { $(self.$field *= rhs.$field);+ } );
#[inline] default_fn!( div_assign_element_wise(&mut self, rhs: $VectorN<S>) { $(self.$field /= rhs.$field);+ } );
#[inline] fn rem_assign_element_wise(&mut self, rhs: $VectorN<S>) { $(self.$field %= rhs.$field);+ }
}
impl<S: BaseNum> ElementWise<S> for $VectorN<S> {
#[inline] default_fn!( add_element_wise(self, rhs: S) -> $VectorN<S> { $VectorN::new($(self.$field + rhs),+) } );
#[inline] default_fn!( sub_element_wise(self, rhs: S) -> $VectorN<S> { $VectorN::new($(self.$field - rhs),+) } );
#[inline] default_fn!( mul_element_wise(self, rhs: S) -> $VectorN<S> { $VectorN::new($(self.$field * rhs),+) } );
#[inline] default_fn!( div_element_wise(self, rhs: S) -> $VectorN<S> { $VectorN::new($(self.$field / rhs),+) } );
#[inline] fn rem_element_wise(self, rhs: S) -> $VectorN<S> { $VectorN::new($(self.$field % rhs),+) }
#[inline] default_fn!( add_assign_element_wise(&mut self, rhs: S) { $(self.$field += rhs);+ } );
#[inline] default_fn!( sub_assign_element_wise(&mut self, rhs: S) { $(self.$field -= rhs);+ } );
#[inline] default_fn!( mul_assign_element_wise(&mut self, rhs: S) { $(self.$field *= rhs);+ } );
#[inline] default_fn!( div_assign_element_wise(&mut self, rhs: S) { $(self.$field /= rhs);+ } );
#[inline] fn rem_assign_element_wise(&mut self, rhs: S) { $(self.$field %= rhs);+ }
}
impl_scalar_ops!($VectorN<usize> { $($field),+ });
impl_scalar_ops!($VectorN<u8> { $($field),+ });
impl_scalar_ops!($VectorN<u16> { $($field),+ });
impl_scalar_ops!($VectorN<u32> { $($field),+ });
impl_scalar_ops!($VectorN<u64> { $($field),+ });
impl_scalar_ops!($VectorN<isize> { $($field),+ });
impl_scalar_ops!($VectorN<i8> { $($field),+ });
impl_scalar_ops!($VectorN<i16> { $($field),+ });
impl_scalar_ops!($VectorN<i32> { $($field),+ });
impl_scalar_ops!($VectorN<i64> { $($field),+ });
impl_scalar_ops!($VectorN<f32> { $($field),+ });
impl_scalar_ops!($VectorN<f64> { $($field),+ });
impl_index_operators!($VectorN<S>, $n, S, usize);
impl_index_operators!($VectorN<S>, $n, [S], Range<usize>);
impl_index_operators!($VectorN<S>, $n, [S], RangeTo<usize>);
impl_index_operators!($VectorN<S>, $n, [S], RangeFrom<usize>);
impl_index_operators!($VectorN<S>, $n, [S], RangeFull);
}
}
macro_rules! impl_scalar_ops {
($VectorN:ident<$S:ident> { $($field:ident),+ }) => {
impl_operator!(Mul<$VectorN<$S>> for $S {
fn mul(scalar, vector) -> $VectorN<$S> { $VectorN::new($(scalar * vector.$field),+) }
});
impl_operator!(Div<$VectorN<$S>> for $S {
fn div(scalar, vector) -> $VectorN<$S> { $VectorN::new($(scalar / vector.$field),+) }
});
impl_operator!(Rem<$VectorN<$S>> for $S {
fn rem(scalar, vector) -> $VectorN<$S> { $VectorN::new($(scalar % vector.$field),+) }
});
};
}
impl_vector!(Vector1 { x }, 1, vec1);
impl_vector!(Vector2 { x, y }, 2, vec2);
impl_vector!(Vector3 { x, y, z }, 3, vec3);
impl_vector!(Vector4 { x, y, z, w }, 4, vec4);
impl_fixed_array_conversions!(Vector1<S> { x: 0 }, 1);
impl_fixed_array_conversions!(Vector2<S> { x: 0, y: 1 }, 2);
impl_fixed_array_conversions!(Vector3<S> { x: 0, y: 1, z: 2 }, 3);
impl_fixed_array_conversions!(Vector4<S> { x: 0, y: 1, z: 2, w: 3 }, 4);
impl_tuple_conversions!(Vector1<S> { x }, (S,));
impl_tuple_conversions!(Vector2<S> { x, y }, (S, S));
impl_tuple_conversions!(Vector3<S> { x, y, z }, (S, S, S));
impl_tuple_conversions!(Vector4<S> { x, y, z, w }, (S, S, S, S));
impl<S: BaseNum> Vector1<S> {
#[inline]
pub fn unit_x() -> Vector1<S> {
Vector1::new(S::one())
}
impl_swizzle_functions!(Vector1, Vector2, Vector3, Vector4, S, x);
}
impl<S: BaseNum> Vector2<S> {
#[inline]
pub fn unit_x() -> Vector2<S> {
Vector2::new(S::one(), S::zero())
}
#[inline]
pub fn unit_y() -> Vector2<S> {
Vector2::new(S::zero(), S::one())
}
#[inline]
pub fn perp_dot(self, other: Vector2<S>) -> S {
(self.x * other.y) - (self.y * other.x)
}
#[inline]
pub fn extend(self, z: S) -> Vector3<S> {
Vector3::new(self.x, self.y, z)
}
impl_swizzle_functions!(Vector1, Vector2, Vector3, Vector4, S, xy);
}
impl<S: BaseNum> Vector3<S> {
#[inline]
pub fn unit_x() -> Vector3<S> {
Vector3::new(S::one(), S::zero(), S::zero())
}
#[inline]
pub fn unit_y() -> Vector3<S> {
Vector3::new(S::zero(), S::one(), S::zero())
}
#[inline]
pub fn unit_z() -> Vector3<S> {
Vector3::new(S::zero(), S::zero(), S::one())
}
#[inline]
pub fn cross(self, other: Vector3<S>) -> Vector3<S> {
Vector3::new(
(self.y * other.z) - (self.z * other.y),
(self.z * other.x) - (self.x * other.z),
(self.x * other.y) - (self.y * other.x),
)
}
#[inline]
pub fn extend(self, w: S) -> Vector4<S> {
Vector4::new(self.x, self.y, self.z, w)
}
#[inline]
pub fn truncate(self) -> Vector2<S> {
Vector2::new(self.x, self.y)
}
impl_swizzle_functions!(Vector1, Vector2, Vector3, Vector4, S, xyz);
}
impl<S: BaseNum> Vector4<S> {
#[inline]
pub fn unit_x() -> Vector4<S> {
Vector4::new(S::one(), S::zero(), S::zero(), S::zero())
}
#[inline]
pub fn unit_y() -> Vector4<S> {
Vector4::new(S::zero(), S::one(), S::zero(), S::zero())
}
#[inline]
pub fn unit_z() -> Vector4<S> {
Vector4::new(S::zero(), S::zero(), S::one(), S::zero())
}
#[inline]
pub fn unit_w() -> Vector4<S> {
Vector4::new(S::zero(), S::zero(), S::zero(), S::one())
}
#[inline]
pub fn truncate(self) -> Vector3<S> {
Vector3::new(self.x, self.y, self.z)
}
#[inline]
pub fn truncate_n(&self, n: isize) -> Vector3<S> {
match n {
0 => Vector3::new(self.y, self.z, self.w),
1 => Vector3::new(self.x, self.z, self.w),
2 => Vector3::new(self.x, self.y, self.w),
3 => Vector3::new(self.x, self.y, self.z),
_ => panic!("{:?} is out of range", n),
}
}
impl_swizzle_functions!(Vector1, Vector2, Vector3, Vector4, S, xyzw);
}
#[inline]
pub fn dot<V: InnerSpace>(a: V, b: V) -> V::Scalar
where
V::Scalar: BaseFloat,
{
V::dot(a, b)
}
impl<S: BaseNum> InnerSpace for Vector1<S> {
#[inline]
fn dot(self, other: Vector1<S>) -> S {
Vector1::mul_element_wise(self, other).sum()
}
}
impl<S: BaseNum> InnerSpace for Vector2<S> {
#[inline]
fn dot(self, other: Vector2<S>) -> S {
Vector2::mul_element_wise(self, other).sum()
}
#[inline]
fn angle(self, other: Vector2<S>) -> Rad<S>
where
S: BaseFloat,
{
Rad::atan2(Self::perp_dot(self, other), Self::dot(self, other))
}
}
impl<S: BaseNum> InnerSpace for Vector3<S> {
#[inline]
fn dot(self, other: Vector3<S>) -> S {
Vector3::mul_element_wise(self, other).sum()
}
#[inline]
fn angle(self, other: Vector3<S>) -> Rad<S>
where
S: BaseFloat,
{
Rad::atan2(self.cross(other).magnitude(), Self::dot(self, other))
}
}
impl<S: BaseNum> InnerSpace for Vector4<S> {
#[inline]
fn dot(self, other: Vector4<S>) -> S {
Vector4::mul_element_wise(self, other).sum()
}
}
impl<S: fmt::Debug> fmt::Debug for Vector1<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Vector1 ")?;
<[S; 1] as fmt::Debug>::fmt(self.as_ref(), f)
}
}
impl<S: fmt::Debug> fmt::Debug for Vector2<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Vector2 ")?;
<[S; 2] as fmt::Debug>::fmt(self.as_ref(), f)
}
}
impl<S: fmt::Debug> fmt::Debug for Vector3<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Vector3 ")?;
<[S; 3] as fmt::Debug>::fmt(self.as_ref(), f)
}
}
impl<S: fmt::Debug> fmt::Debug for Vector4<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Vector4 ")?;
<[S; 4] as fmt::Debug>::fmt(self.as_ref(), f)
}
}
#[cfg(feature = "mint")]
impl_mint_conversions!(Vector2 { x, y }, Vector2);
#[cfg(feature = "mint")]
impl_mint_conversions!(Vector3 { x, y, z }, Vector3);
#[cfg(feature = "mint")]
impl_mint_conversions!(Vector4 { x, y, z, w }, Vector4);
#[cfg(test)]
mod tests {
mod vector2 {
use vector::*;
const VECTOR2: Vector2<i32> = Vector2 { x: 1, y: 2 };
#[test]
fn test_index() {
assert_eq!(VECTOR2[0], VECTOR2.x);
assert_eq!(VECTOR2[1], VECTOR2.y);
}
#[test]
fn test_index_mut() {
let mut v = VECTOR2;
*&mut v[0] = 0;
assert_eq!(v, [0, 2].into());
}
#[test]
#[should_panic]
fn test_index_out_of_bounds() {
VECTOR2[2];
}
#[test]
fn test_index_range() {
assert_eq!(&VECTOR2[..0], &[]);
assert_eq!(&VECTOR2[..1], &[1]);
assert_eq!(VECTOR2[..0].len(), 0);
assert_eq!(VECTOR2[..1].len(), 1);
assert_eq!(&VECTOR2[2..], &[]);
assert_eq!(&VECTOR2[1..], &[2]);
assert_eq!(VECTOR2[2..].len(), 0);
assert_eq!(VECTOR2[1..].len(), 1);
assert_eq!(&VECTOR2[..], &[1, 2]);
assert_eq!(VECTOR2[..].len(), 2);
}
#[test]
fn test_into() {
let v = VECTOR2;
{
let v: [i32; 2] = v.into();
assert_eq!(v, [1, 2]);
}
{
let v: (i32, i32) = v.into();
assert_eq!(v, (1, 2));
}
}
#[test]
fn test_as_ref() {
let v = VECTOR2;
{
let v: &[i32; 2] = v.as_ref();
assert_eq!(v, &[1, 2]);
}
{
let v: &(i32, i32) = v.as_ref();
assert_eq!(v, &(1, 2));
}
}
#[test]
fn test_as_mut() {
let mut v = VECTOR2;
{
let v: &mut [i32; 2] = v.as_mut();
assert_eq!(v, &mut [1, 2]);
}
{
let v: &mut (i32, i32) = v.as_mut();
assert_eq!(v, &mut (1, 2));
}
}
#[test]
fn test_from() {
assert_eq!(Vector2::from([1, 2]), VECTOR2);
{
let v = &[1, 2];
let v: &Vector2<_> = From::from(v);
assert_eq!(v, &VECTOR2);
}
{
let v = &mut [1, 2];
let v: &mut Vector2<_> = From::from(v);
assert_eq!(v, &VECTOR2);
}
assert_eq!(Vector2::from((1, 2)), VECTOR2);
{
let v = &(1, 2);
let v: &Vector2<_> = From::from(v);
assert_eq!(v, &VECTOR2);
}
{
let v = &mut (1, 2);
let v: &mut Vector2<_> = From::from(v);
assert_eq!(v, &VECTOR2);
}
}
#[test]
fn test_is_finite() {
use num_traits::Float;
assert!(!Vector2::from([Float::nan(), 1.0]).is_finite());
assert!(!Vector2::from([1.0, Float::infinity()]).is_finite());
assert!(Vector2::from([-1.0, 1.0]).is_finite());
}
#[test]
fn test_zip() {
assert_eq!(
Vector2::new(true, false),
Vector2::new(-2, 1).zip(Vector2::new(-1, -1), |a, b| a < b)
);
}
}
mod vector3 {
use vector::*;
const VECTOR3: Vector3<i32> = Vector3 { x: 1, y: 2, z: 3 };
#[test]
fn test_index() {
assert_eq!(VECTOR3[0], VECTOR3.x);
assert_eq!(VECTOR3[1], VECTOR3.y);
assert_eq!(VECTOR3[2], VECTOR3.z);
}
#[test]
fn test_index_mut() {
let mut v = VECTOR3;
*&mut v[1] = 0;
assert_eq!(v, [1, 0, 3].into());
}
#[test]
#[should_panic]
fn test_index_out_of_bounds() {
VECTOR3[3];
}
#[test]
fn test_index_range() {
assert_eq!(&VECTOR3[..1], &[1]);
assert_eq!(&VECTOR3[..2], &[1, 2]);
assert_eq!(VECTOR3[..1].len(), 1);
assert_eq!(VECTOR3[..2].len(), 2);
assert_eq!(&VECTOR3[2..], &[3]);
assert_eq!(&VECTOR3[1..], &[2, 3]);
assert_eq!(VECTOR3[2..].len(), 1);
assert_eq!(VECTOR3[1..].len(), 2);
assert_eq!(&VECTOR3[..], &[1, 2, 3]);
assert_eq!(VECTOR3[..].len(), 3);
}
#[test]
fn test_into() {
let v = VECTOR3;
{
let v: [i32; 3] = v.into();
assert_eq!(v, [1, 2, 3]);
}
{
let v: (i32, i32, i32) = v.into();
assert_eq!(v, (1, 2, 3));
}
}
#[test]
fn test_as_ref() {
let v = VECTOR3;
{
let v: &[i32; 3] = v.as_ref();
assert_eq!(v, &[1, 2, 3]);
}
{
let v: &(i32, i32, i32) = v.as_ref();
assert_eq!(v, &(1, 2, 3));
}
}
#[test]
fn test_as_mut() {
let mut v = VECTOR3;
{
let v: &mut [i32; 3] = v.as_mut();
assert_eq!(v, &mut [1, 2, 3]);
}
{
let v: &mut (i32, i32, i32) = v.as_mut();
assert_eq!(v, &mut (1, 2, 3));
}
}
#[test]
fn test_from() {
assert_eq!(Vector3::from([1, 2, 3]), VECTOR3);
{
let v = &[1, 2, 3];
let v: &Vector3<_> = From::from(v);
assert_eq!(v, &VECTOR3);
}
{
let v = &mut [1, 2, 3];
let v: &mut Vector3<_> = From::from(v);
assert_eq!(v, &VECTOR3);
}
assert_eq!(Vector3::from((1, 2, 3)), VECTOR3);
{
let v = &(1, 2, 3);
let v: &Vector3<_> = From::from(v);
assert_eq!(v, &VECTOR3);
}
{
let v = &mut (1, 2, 3);
let v: &mut Vector3<_> = From::from(v);
assert_eq!(v, &VECTOR3);
}
}
#[test]
fn test_is_finite() {
use num_traits::Float;
assert!(!Vector3::from([Float::nan(), 1.0, 1.0]).is_finite());
assert!(!Vector3::from([1.0, 1.0, Float::infinity()]).is_finite());
assert!(Vector3::from([-1.0, 1.0, 1.0]).is_finite());
}
#[test]
fn test_zip() {
assert_eq!(
Vector3::new(true, false, false),
Vector3::new(-2, 1, 0).zip(Vector3::new(-1, -1, -1), |a, b| a < b)
);
}
}
mod vector4 {
use vector::*;
const VECTOR4: Vector4<i32> = Vector4 {
x: 1,
y: 2,
z: 3,
w: 4,
};
#[test]
fn test_index() {
assert_eq!(VECTOR4[0], VECTOR4.x);
assert_eq!(VECTOR4[1], VECTOR4.y);
assert_eq!(VECTOR4[2], VECTOR4.z);
assert_eq!(VECTOR4[3], VECTOR4.w);
}
#[test]
fn test_index_mut() {
let mut v = VECTOR4;
*&mut v[2] = 0;
assert_eq!(v, [1, 2, 0, 4].into());
}
#[test]
#[should_panic]
fn test_index_out_of_bounds() {
VECTOR4[4];
}
#[test]
fn test_index_range() {
assert_eq!(&VECTOR4[..2], &[1, 2]);
assert_eq!(&VECTOR4[..3], &[1, 2, 3]);
assert_eq!(VECTOR4[..2].len(), 2);
assert_eq!(VECTOR4[..3].len(), 3);
assert_eq!(&VECTOR4[2..], &[3, 4]);
assert_eq!(&VECTOR4[1..], &[2, 3, 4]);
assert_eq!(VECTOR4[2..].len(), 2);
assert_eq!(VECTOR4[1..].len(), 3);
assert_eq!(&VECTOR4[..], &[1, 2, 3, 4]);
assert_eq!(VECTOR4[..].len(), 4);
}
#[test]
fn test_into() {
let v = VECTOR4;
{
let v: [i32; 4] = v.into();
assert_eq!(v, [1, 2, 3, 4]);
}
{
let v: (i32, i32, i32, i32) = v.into();
assert_eq!(v, (1, 2, 3, 4));
}
}
#[test]
fn test_as_ref() {
let v = VECTOR4;
{
let v: &[i32; 4] = v.as_ref();
assert_eq!(v, &[1, 2, 3, 4]);
}
{
let v: &(i32, i32, i32, i32) = v.as_ref();
assert_eq!(v, &(1, 2, 3, 4));
}
}
#[test]
fn test_as_mut() {
let mut v = VECTOR4;
{
let v: &mut [i32; 4] = v.as_mut();
assert_eq!(v, &mut [1, 2, 3, 4]);
}
{
let v: &mut (i32, i32, i32, i32) = v.as_mut();
assert_eq!(v, &mut (1, 2, 3, 4));
}
}
#[test]
fn test_from() {
assert_eq!(Vector4::from([1, 2, 3, 4]), VECTOR4);
{
let v = &[1, 2, 3, 4];
let v: &Vector4<_> = From::from(v);
assert_eq!(v, &VECTOR4);
}
{
let v = &mut [1, 2, 3, 4];
let v: &mut Vector4<_> = From::from(v);
assert_eq!(v, &VECTOR4);
}
assert_eq!(Vector4::from((1, 2, 3, 4)), VECTOR4);
{
let v = &(1, 2, 3, 4);
let v: &Vector4<_> = From::from(v);
assert_eq!(v, &VECTOR4);
}
{
let v = &mut (1, 2, 3, 4);
let v: &mut Vector4<_> = From::from(v);
assert_eq!(v, &VECTOR4);
}
}
#[test]
fn test_is_finite() {
use num_traits::Float;
assert!(!Vector4::from([0.0, Float::nan(), 1.0, 1.0]).is_finite());
assert!(!Vector4::from([1.0, 1.0, Float::neg_infinity(), 0.0]).is_finite());
assert!(Vector4::from([-1.0, 0.0, 1.0, 1.0]).is_finite());
}
#[test]
fn test_zip() {
assert_eq!(
Vector4::new(true, false, false, false),
Vector4::new(-2, 1, 0, 1).zip(Vector4::new(-1, -1, -1, -1), |a, b| a < b)
);
}
#[test]
fn test_dot() {
assert_eq!(vec3(1.0, 2.0, 3.0).dot(vec3(4.0, 5.0, 6.0)), 32.0);
assert_eq!(vec3(1, 2, 3).dot(vec3(4, 5, 6)), 32);
}
}
}