1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
use k256::ecdsa;

use coins_core::prelude::{Hash160, Hash160Digest, MarkedDigest, MarkedDigestOutput};

use crate::{
    path::{DerivationPath, KeyDerivation},
    primitives::{Hint, KeyFingerprint, XKeyInfo},
    xkeys::{Parent, XPriv, XPub, SEED},
    Bip32Error,
};

/// Derived keys are keys coupled with their derivation. We use this trait to
/// check ancestry relationships between keys.
pub trait DerivedKey {
    /// Return this key's derivation
    fn derivation(&self) -> &KeyDerivation;

    /// `true` if the keys share a root fingerprint, `false` otherwise. Note that on key
    /// fingerprints, which may collide accidentally, or be intentionally collided.
    fn same_root<K: DerivedKey>(&self, other: &K) -> bool {
        self.derivation().same_root(other.derivation())
    }

    /// `true` if this key is a possible ancestor of the argument, `false` otherwise.
    ///
    /// Warning: this check is cheap, but imprecise. It simply compares the root fingerprints
    /// (which may collide) and checks that `self.path` is a prefix of `other.path`. This may be
    /// deliberately foold by an attacker. For a precise check, use
    /// `DerivedXPriv::is_private_ancestor_of()` or
    /// `DerivedXPub::is_public_ancestor_of()`
    fn is_possible_ancestor_of<K: DerivedKey>(&self, other: &K) -> bool {
        self.derivation()
            .is_possible_ancestor_of(other.derivation())
    }

    /// Returns the path to the descendant, or `None` if the argument is definitely not a
    /// descendant.
    ///
    /// This is useful for determining the path to reach some descendant from some ancestor.
    fn path_to_descendant<K: DerivedKey>(&self, other: &K) -> Option<DerivationPath> {
        self.derivation().path_to_descendant(other.derivation())
    }
}

/// An XPriv with its derivation.
#[derive(Debug, Clone)]
#[cfg_attr(
    any(feature = "mainnet", feature = "testnet"),
    derive(serde::Serialize, serde::Deserialize)
)]
pub struct DerivedXPriv {
    xpriv: XPriv,
    derivation: KeyDerivation,
}

inherit_signer!(DerivedXPriv.xpriv);

impl AsRef<XPriv> for DerivedXPriv {
    fn as_ref(&self) -> &XPriv {
        &self.xpriv
    }
}

impl AsRef<XKeyInfo> for DerivedXPriv {
    fn as_ref(&self) -> &XKeyInfo {
        &self.xpriv.xkey_info
    }
}

impl AsRef<ecdsa::SigningKey> for DerivedXPriv {
    fn as_ref(&self) -> &ecdsa::SigningKey {
        &self.xpriv.key
    }
}

impl DerivedKey for DerivedXPriv {
    fn derivation(&self) -> &KeyDerivation {
        &self.derivation
    }
}

impl DerivedXPriv {
    /// Instantiate a derived XPub from the XPub and derivatin. This usually
    /// should not be called directly. Prefer deriving keys from parents.
    pub fn new(xpriv: XPriv, derivation: KeyDerivation) -> Self {
        Self { xpriv, derivation }
    }

    /// Check if this XPriv is the private ancestor of some other derived key.
    /// To check ancestry of another private key, derive its public key first
    pub fn is_private_ancestor_of(&self, other: &DerivedXPub) -> Result<bool, Bip32Error> {
        if let Some(path) = self.path_to_descendant(other) {
            let descendant = self.derive_path(&path)?;
            dbg!(descendant.verify_key());
            dbg!(&other);
            Ok(descendant.verify_key() == *other)
        } else {
            Ok(false)
        }
    }

    /// Generate a customized root node using the stati
    pub fn root_node(
        hmac_key: &[u8],
        data: &[u8],
        hint: Option<Hint>,
    ) -> Result<DerivedXPriv, Bip32Error> {
        Self::custom_root_node(hmac_key, data, hint)
    }

    /// Generate a root node from some seed data. Uses the BIP32-standard hmac key.
    ///
    ///
    /// # Important:
    ///
    /// Use a seed of AT LEAST 128 bits.
    pub fn root_from_seed(data: &[u8], hint: Option<Hint>) -> Result<DerivedXPriv, Bip32Error> {
        Self::custom_root_from_seed(data, hint)
    }

    /// Instantiate a root node using a custom HMAC key.
    pub fn custom_root_node(
        hmac_key: &[u8],
        data: &[u8],
        hint: Option<Hint>,
    ) -> Result<DerivedXPriv, Bip32Error> {
        let xpriv = XPriv::custom_root_node(hmac_key, data, hint)?;

        let derivation = KeyDerivation {
            root: xpriv.fingerprint(),
            path: vec![].into(),
        };

        Ok(DerivedXPriv { xpriv, derivation })
    }

    /// Generate a root node from some seed data. Uses the BIP32-standard hmac key.
    ///
    ///
    /// # Important:
    ///
    /// Use a seed of AT LEAST 128 bits.
    pub fn custom_root_from_seed(
        data: &[u8],
        hint: Option<Hint>,
    ) -> Result<DerivedXPriv, Bip32Error> {
        Self::custom_root_node(SEED, data, hint)
    }

    /// Derive the corresponding xpub
    pub fn verify_key(&self) -> DerivedXPub {
        DerivedXPub {
            xpub: self.xpriv.verify_key(),
            derivation: self.derivation.clone(),
        }
    }
}

impl Parent for DerivedXPriv {
    fn derive_child(&self, index: u32) -> Result<Self, Bip32Error> {
        Ok(Self {
            xpriv: self.xpriv.derive_child(index)?,
            derivation: self.derivation.extended(index),
        })
    }
}

/// An XPub with its derivation.
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(
    any(feature = "mainnet", feature = "testnet"),
    derive(serde::Serialize, serde::Deserialize)
)]
pub struct DerivedXPub {
    xpub: XPub,
    derivation: KeyDerivation,
}

inherit_verifier!(DerivedXPub.xpub);

impl AsRef<XPub> for DerivedXPub {
    fn as_ref(&self) -> &XPub {
        &self.xpub
    }
}

impl AsRef<XKeyInfo> for DerivedXPub {
    fn as_ref(&self) -> &XKeyInfo {
        &self.xpub.xkey_info
    }
}

impl AsRef<ecdsa::VerifyingKey> for DerivedXPub {
    fn as_ref(&self) -> &ecdsa::VerifyingKey {
        &self.xpub.key
    }
}

impl Parent for DerivedXPub {
    fn derive_child(&self, index: u32) -> Result<Self, Bip32Error> {
        Ok(Self {
            xpub: self.xpub.derive_child(index)?,
            derivation: self.derivation.extended(index),
        })
    }
}

impl DerivedKey for DerivedXPub {
    fn derivation(&self) -> &KeyDerivation {
        &self.derivation
    }
}

impl DerivedXPub {
    /// Instantiate a derived XPub from the XPub and derivatin. This usually
    /// should not be called directly. Prefer deriving keys from parents.
    pub fn new(xpub: XPub, derivation: KeyDerivation) -> Self {
        Self { xpub, derivation }
    }

    /// Check if this XPriv is the private ancestor of some other derived key
    pub fn is_public_ancestor_of(&self, other: &DerivedXPub) -> Result<bool, Bip32Error> {
        if let Some(path) = self.path_to_descendant(other) {
            let descendant = self.derive_path(&path)?;
            Ok(descendant == *other)
        } else {
            Ok(false)
        }
    }
}

/// A Pubkey with its derivation. Primarily used by PSBT.
pub struct DerivedPubkey {
    key: ecdsa::VerifyingKey,
    derivation: KeyDerivation,
}

impl std::fmt::Debug for DerivedPubkey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("DerivedPubkey")
            .field("public key", &self.key.to_bytes())
            .field("key fingerprint", &self.fingerprint())
            .field("derivation", &self.derivation)
            .finish()
    }
}

inherit_verifier!(DerivedPubkey.key);

impl DerivedKey for DerivedPubkey {
    fn derivation(&self) -> &KeyDerivation {
        &self.derivation
    }
}

impl AsRef<ecdsa::VerifyingKey> for DerivedPubkey {
    fn as_ref(&self) -> &ecdsa::VerifyingKey {
        &self.key
    }
}

impl DerivedPubkey {
    /// Instantiate a new `DerivedPubkey`
    pub fn new(key: ecdsa::VerifyingKey, derivation: KeyDerivation) -> Self {
        Self { key, derivation }
    }

    /// Return the hash of the compressed (Sec1) pubkey.
    pub fn pubkey_hash160(&self) -> Hash160Digest {
        Hash160::digest_marked(&self.key.to_bytes())
    }

    /// The fingerprint is the first 4 bytes of the HASH160 of the serialized
    /// public key.
    pub fn fingerprint(&self) -> KeyFingerprint {
        let digest = self.pubkey_hash160();
        let mut buf = [0u8; 4];
        buf.copy_from_slice(&digest.as_slice()[..4]);
        buf.into()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::{
        enc::{MainnetEncoder, XKeyEncoder},
        path::DerivationPath,
        prelude::*,
        primitives::*,
        BIP32_HARDEN,
    };
    use coins_core::hashes::*;
    use k256::ecdsa::signature::{DigestSigner, DigestVerifier};

    use hex;

    struct KeyDeriv<'a> {
        pub path: &'a [u32],
    }

    fn validate_descendant(d: &KeyDeriv, m: &DerivedXPriv) {
        let path: DerivationPath = d.path.into();

        let m_pub = m.verify_key();

        let xpriv = m.derive_path(&path).unwrap();
        let xpub = xpriv.verify_key();
        assert!(m.same_root(&xpriv));
        assert!(m.same_root(&xpub));
        assert!(m.is_possible_ancestor_of(&xpriv));
        assert!(m.is_possible_ancestor_of(&xpub));

        let result = m.is_private_ancestor_of(&xpub).expect("should work");

        if !result {
            panic!("failed validate_descendant is_private_ancestor_of");
        }

        let result = m_pub.is_public_ancestor_of(&xpub);

        match result {
            Ok(true) => {}
            Ok(false) => panic!("failed validate_descendant is_public_ancestor_of"),
            Err(_) => {
                let path: crate::path::DerivationPath = d.path.into();
                assert!(
                    path.last_hardened().1.is_some(),
                    "is_public_ancestor_of failed for unhardened path"
                )
            }
        }

        let derived_path = m
            .path_to_descendant(&xpriv)
            .expect("expected a path to descendant");
        assert_eq!(&path, &derived_path, "derived path is not as expected");
    }

    #[test]
    fn bip32_vector_1() {
        let seed: [u8; 16] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];

        let xpriv = DerivedXPriv::root_from_seed(&seed, Some(Hint::Legacy)).unwrap();

        let descendants = [
            KeyDeriv {
                path: &[BIP32_HARDEN],
            },
            KeyDeriv {
                path: &[BIP32_HARDEN, 1],
            },
            KeyDeriv {
                path: &[BIP32_HARDEN, 1, 2 + BIP32_HARDEN],
            },
            KeyDeriv {
                path: &[BIP32_HARDEN, 1, 2 + BIP32_HARDEN, 2],
            },
            KeyDeriv {
                path: &[BIP32_HARDEN, 1, 2 + BIP32_HARDEN, 2, 1000000000],
            },
        ];

        for case in descendants.iter() {
            validate_descendant(case, &xpriv);
        }
    }

    #[test]
    fn bip32_vector_2() {
        let seed = hex::decode(&"fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542").unwrap();

        let xpriv = DerivedXPriv::root_from_seed(&seed, Some(Hint::Legacy)).unwrap();

        let descendants = [
            KeyDeriv { path: &[0] },
            KeyDeriv {
                path: &[0, 2147483647 + BIP32_HARDEN],
            },
            KeyDeriv {
                path: &[0, 2147483647 + BIP32_HARDEN, 1],
            },
            KeyDeriv {
                path: &[0, 2147483647 + BIP32_HARDEN, 1, 2147483646 + BIP32_HARDEN],
            },
            KeyDeriv {
                path: &[
                    0,
                    2147483647 + BIP32_HARDEN,
                    1,
                    2147483646 + BIP32_HARDEN,
                    2,
                ],
            },
        ];

        for case in descendants.iter() {
            validate_descendant(case, &xpriv);
        }
    }

    #[test]
    fn bip32_vector_3() {
        let seed = hex::decode(&"4b381541583be4423346c643850da4b320e46a87ae3d2a4e6da11eba819cd4acba45d239319ac14f863b8d5ab5a0d0c64d2e8a1e7d1457df2e5a3c51c73235be").unwrap();

        let xpriv = DerivedXPriv::root_from_seed(&seed, Some(Hint::Legacy)).unwrap();

        let descendants = [KeyDeriv {
            path: &[BIP32_HARDEN],
        }];

        for case in descendants.iter() {
            validate_descendant(case, &xpriv);
        }
    }

    #[test]
    fn it_can_sign_and_verify() {
        let digest = Hash256::default();
        let mut wrong_digest = Hash256::default();
        wrong_digest.update(&[0u8]);

        let xpriv_str = "xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbPy6cq3jPPqjiChkVvvNKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi".to_owned();
        let xpriv = MainnetEncoder::xpriv_from_base58(&xpriv_str).unwrap();
        let fake_deriv = KeyDerivation {
            root: [0, 0, 0, 0].into(),
            path: (0..0).collect(),
        };

        let key = DerivedXPriv::new(xpriv, fake_deriv);
        let key_pub = key.verify_key();

        // sign_digest + verify_digest
        let sig: Signature = key.sign_digest(digest.clone());
        key_pub.verify_digest(digest.clone(), &sig).unwrap();

        let err_bad_sig = key_pub.verify_digest(wrong_digest.clone(), &sig);
        match err_bad_sig {
            Err(_) => {}
            _ => panic!("expected signature validation error"),
        }

        let sig: RecoverableSignature = key.sign_digest(digest.clone());
        key_pub.verify_digest(digest, &sig).unwrap();

        let err_bad_sig = key_pub.verify_digest(wrong_digest.clone(), &sig);
        match err_bad_sig {
            Err(_) => {}
            _ => panic!("expected signature validation error"),
        }
    }

    #[test]
    fn it_can_descendant_sign_and_verify() {
        let digest = Hash256::default();
        let mut wrong_digest = Hash256::default();
        wrong_digest.update(&[0u8]);

        let path = vec![0u32, 1, 2];

        let xpriv_str = "xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbPy6cq3jPPqjiChkVvvNKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi".to_owned();
        let xpriv = MainnetEncoder::xpriv_from_base58(&xpriv_str).unwrap();
        let fake_deriv = KeyDerivation {
            root: [0, 0, 0, 0].into(),
            path: (0..0).collect(),
        };

        let key = DerivedXPriv::new(xpriv, fake_deriv.clone());
        let key_pub = key.verify_key();
        assert_eq!(key.derivation(), &fake_deriv);

        // sign_digest + verify_digest
        let sig: Signature = key.derive_path(&path).unwrap().sign_digest(digest.clone());
        key_pub
            .derive_path(&path)
            .unwrap()
            .verify_digest(digest.clone(), &sig)
            .unwrap();

        let err_bad_sig = key_pub
            .derive_path(&path)
            .unwrap()
            .verify_digest(wrong_digest.clone(), &sig);
        match err_bad_sig {
            Err(_) => {}
            _ => panic!("expected signature validation error"),
        }

        let sig: RecoverableSignature = key.derive_path(&path).unwrap().sign_digest(digest.clone());
        key_pub
            .derive_path(&path)
            .unwrap()
            .verify_digest(digest.clone(), &sig)
            .unwrap();

        let err_bad_sig = key_pub
            .derive_path(&path)
            .unwrap()
            .verify_digest(wrong_digest.clone(), &sig);
        match err_bad_sig {
            Err(_) => {}
            _ => panic!("expected signature validation error"),
        }

        // sign + verify
        let sig: Signature = key.derive_path(&path).unwrap().sign_digest(digest.clone());
        key_pub
            .derive_path(&path)
            .unwrap()
            .verify_digest(digest.clone(), &sig)
            .unwrap();

        let err_bad_sig = key_pub
            .derive_path(&path)
            .unwrap()
            .verify_digest(wrong_digest.clone(), &sig);
        match err_bad_sig {
            Err(_) => {}
            _ => panic!("expected signature validation error"),
        }

        // sign_recoverable + verify_recoverable
        let sig: RecoverableSignature = key.derive_path(&path).unwrap().sign_digest(digest.clone());
        key_pub
            .derive_path(&path)
            .unwrap()
            .verify_digest(digest, &sig)
            .unwrap();

        let err_bad_sig = key_pub
            .derive_path(&path)
            .unwrap()
            .verify_digest(wrong_digest.clone(), &sig);
        match err_bad_sig {
            Err(_) => {}
            _ => panic!("expected signature validation error"),
        }

        // Sig serialize/deserialize
        let der_sig = hex::decode("304402200cc613393c11889ed1384388c9213b7778cfa0c7c2b6fcc080f0296fc8ac87d202205788d8994d61ce901d1ee22c5210994c235f17ddb3c31e0fc0ec9730ecf084ce").unwrap();
        let rsv = [
            12, 198, 19, 57, 60, 17, 136, 158, 209, 56, 67, 136, 201, 33, 59, 119, 120, 207, 160,
            199, 194, 182, 252, 192, 128, 240, 41, 111, 200, 172, 135, 210, 87, 136, 216, 153, 77,
            97, 206, 144, 29, 30, 226, 44, 82, 16, 153, 76, 35, 95, 23, 221, 179, 195, 30, 15, 192,
            236, 151, 48, 236, 240, 132, 206, 1,
        ];
        assert_eq!(Signature::from(sig).to_der().as_bytes(), der_sig);
        assert_eq!(sig.as_ref(), rsv);
        assert_eq!(Signature::from(sig), Signature::from_der(&der_sig).unwrap(),);
        assert_eq!(sig, RecoverableSignature::from_bytes(&rsv).unwrap());
    }

    #[test]
    fn it_instantiates_derived_xprivs_from_seeds() {
        DerivedXPriv::custom_root_from_seed(&[0u8; 32][..], None).unwrap();

        let err_too_short = DerivedXPriv::custom_root_from_seed(&[0u8; 2][..], None);
        match err_too_short {
            Err(Bip32Error::SeedTooShort) => {}
            _ => panic!("expected err too short"),
        }

        let err_too_short = DerivedXPriv::custom_root_from_seed(&[0u8; 2][..], None);
        match err_too_short {
            Err(Bip32Error::SeedTooShort) => {}
            _ => panic!("expected err too short"),
        }
    }

    #[test]
    fn it_checks_ancestry() {
        let m = DerivedXPriv::custom_root_from_seed(&[0u8; 32][..], None).unwrap();
        let m2 = DerivedXPriv::custom_root_from_seed(&[1u8; 32][..], None).unwrap();
        let m_pub = m.verify_key();
        let cases = [
            (&m, &m_pub, true),
            (&m2, &m_pub, false),
            (&m, &m2.verify_key(), false),
            (&m, &m.derive_child(33).unwrap().verify_key(), true),
            (&m, &m_pub.derive_child(33).unwrap(), true),
            (&m, &m2.derive_child(33).unwrap().verify_key(), false),
        ];
        for (i, case) in cases.iter().enumerate() {
            dbg!(i);
            assert_eq!(case.0.is_private_ancestor_of(case.1).unwrap(), case.2);
        }
    }
}