compio_dispatcher/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
//! Multithreading dispatcher for compio.
#![warn(missing_docs)]
use std::{
future::Future,
io,
num::NonZeroUsize,
panic::resume_unwind,
sync::{Arc, Mutex},
thread::{JoinHandle, available_parallelism},
};
use compio_driver::{AsyncifyPool, DispatchError, Dispatchable, ProactorBuilder};
use compio_runtime::{JoinHandle as CompioJoinHandle, Runtime, event::Event};
use flume::{Sender, unbounded};
use futures_channel::oneshot;
type Spawning = Box<dyn Spawnable + Send>;
trait Spawnable {
fn spawn(self: Box<Self>, handle: &Runtime) -> CompioJoinHandle<()>;
}
/// Concrete type for the closure we're sending to worker threads
struct Concrete<F, R> {
callback: oneshot::Sender<R>,
func: F,
}
impl<F, R> Concrete<F, R> {
pub fn new(func: F) -> (Self, oneshot::Receiver<R>) {
let (tx, rx) = oneshot::channel();
(Self { callback: tx, func }, rx)
}
}
impl<F, Fut, R> Spawnable for Concrete<F, R>
where
F: FnOnce() -> Fut + Send + 'static,
Fut: Future<Output = R>,
R: Send + 'static,
{
fn spawn(self: Box<Self>, handle: &Runtime) -> CompioJoinHandle<()> {
let Concrete { callback, func } = *self;
handle.spawn(async move {
let res = func().await;
callback.send(res).ok();
})
}
}
impl<F, R> Dispatchable for Concrete<F, R>
where
F: FnOnce() -> R + Send + 'static,
R: Send + 'static,
{
fn run(self: Box<Self>) {
let Concrete { callback, func } = *self;
let res = func();
callback.send(res).ok();
}
}
/// The dispatcher. It manages the threads and dispatches the tasks.
#[derive(Debug)]
pub struct Dispatcher {
sender: Sender<Spawning>,
threads: Vec<JoinHandle<()>>,
pool: AsyncifyPool,
}
impl Dispatcher {
/// Create the dispatcher with specified number of threads.
pub(crate) fn new_impl(mut builder: DispatcherBuilder) -> io::Result<Self> {
let mut proactor_builder = builder.proactor_builder;
proactor_builder.force_reuse_thread_pool();
let pool = proactor_builder.create_or_get_thread_pool();
let (sender, receiver) = unbounded::<Spawning>();
let threads = (0..builder.nthreads)
.map({
|index| {
let proactor_builder = proactor_builder.clone();
let receiver = receiver.clone();
let thread_builder = std::thread::Builder::new();
let thread_builder = if let Some(s) = builder.stack_size {
thread_builder.stack_size(s)
} else {
thread_builder
};
let thread_builder = if let Some(f) = &mut builder.names {
thread_builder.name(f(index))
} else {
thread_builder
};
thread_builder.spawn(move || {
Runtime::builder()
.with_proactor(proactor_builder)
.build()
.expect("cannot create compio runtime")
.block_on(async move {
while let Ok(f) = receiver.recv_async().await {
let task = Runtime::with_current(|rt| f.spawn(rt));
if builder.concurrent {
task.detach()
} else {
task.await.ok();
}
}
});
})
}
})
.collect::<io::Result<Vec<_>>>()?;
Ok(Self {
sender,
threads,
pool,
})
}
/// Create the dispatcher with default config.
pub fn new() -> io::Result<Self> {
Self::builder().build()
}
/// Create a builder to build a dispatcher.
pub fn builder() -> DispatcherBuilder {
DispatcherBuilder::default()
}
/// Dispatch a task to the threads
///
/// The provided `f` should be [`Send`] because it will be send to another
/// thread before calling. The returned [`Future`] need not to be [`Send`]
/// because it will be executed on only one thread.
///
/// # Error
///
/// If all threads have panicked, this method will return an error with the
/// sent closure.
pub fn dispatch<Fn, Fut, R>(&self, f: Fn) -> Result<oneshot::Receiver<R>, DispatchError<Fn>>
where
Fn: (FnOnce() -> Fut) + Send + 'static,
Fut: Future<Output = R> + 'static,
R: Send + 'static,
{
let (concrete, rx) = Concrete::new(f);
match self.sender.send(Box::new(concrete)) {
Ok(_) => Ok(rx),
Err(err) => {
// SAFETY: We know the dispatchable we sent has type `Concrete<Fn, R>`
let recovered =
unsafe { Box::from_raw(Box::into_raw(err.0) as *mut Concrete<Fn, R>) };
Err(DispatchError(recovered.func))
}
}
}
/// Dispatch a blocking task to the threads.
///
/// Blocking pool of the dispatcher will be obtained from the proactor
/// builder. So any configuration of the proactor's blocking pool will be
/// applied to the dispatcher.
///
/// # Error
///
/// If all threads are busy and the thread pool is full, this method will
/// return an error with the original closure. The limit can be configured
/// with [`DispatcherBuilder::proactor_builder`] and
/// [`ProactorBuilder::thread_pool_limit`].
pub fn dispatch_blocking<Fn, R>(&self, f: Fn) -> Result<oneshot::Receiver<R>, DispatchError<Fn>>
where
Fn: FnOnce() -> R + Send + 'static,
R: Send + 'static,
{
let (concrete, rx) = Concrete::new(f);
self.pool
.dispatch(concrete)
.map_err(|e| DispatchError(e.0.func))?;
Ok(rx)
}
/// Stop the dispatcher and wait for the threads to complete. If there is a
/// thread panicked, this method will resume the panic.
pub async fn join(self) -> io::Result<()> {
drop(self.sender);
let results = Arc::new(Mutex::new(vec![]));
let event = Event::new();
let handle = event.handle();
if let Err(f) = self.pool.dispatch({
let results = results.clone();
move || {
*results.lock().unwrap() = self
.threads
.into_iter()
.map(|thread| thread.join())
.collect();
handle.notify();
}
}) {
std::thread::spawn(f.0);
}
event.wait().await;
let mut guard = results.lock().unwrap();
for res in std::mem::take::<Vec<std::thread::Result<()>>>(guard.as_mut()) {
res.unwrap_or_else(|e| resume_unwind(e));
}
Ok(())
}
}
/// A builder for [`Dispatcher`].
pub struct DispatcherBuilder {
nthreads: usize,
concurrent: bool,
stack_size: Option<usize>,
names: Option<Box<dyn FnMut(usize) -> String>>,
proactor_builder: ProactorBuilder,
}
impl DispatcherBuilder {
/// Create a builder with default settings.
pub fn new() -> Self {
Self {
nthreads: available_parallelism().map(|n| n.get()).unwrap_or(1),
concurrent: true,
stack_size: None,
names: None,
proactor_builder: ProactorBuilder::new(),
}
}
/// If execute tasks concurrently. Default to be `true`.
///
/// When set to `false`, tasks are executed sequentially without any
/// concurrency within the thread.
pub fn concurrent(mut self, concurrent: bool) -> Self {
self.concurrent = concurrent;
self
}
/// Set the number of worker threads of the dispatcher. The default value is
/// the CPU number. If the CPU number could not be retrieved, the
/// default value is 1.
pub fn worker_threads(mut self, nthreads: NonZeroUsize) -> Self {
self.nthreads = nthreads.get();
self
}
/// Set the size of stack of the worker threads.
pub fn stack_size(mut self, s: usize) -> Self {
self.stack_size = Some(s);
self
}
/// Provide a function to assign names to the worker threads.
pub fn thread_names(mut self, f: impl (FnMut(usize) -> String) + 'static) -> Self {
self.names = Some(Box::new(f) as _);
self
}
/// Set the proactor builder for the inner runtimes.
pub fn proactor_builder(mut self, builder: ProactorBuilder) -> Self {
self.proactor_builder = builder;
self
}
/// Build the [`Dispatcher`].
pub fn build(self) -> io::Result<Dispatcher> {
Dispatcher::new_impl(self)
}
}
impl Default for DispatcherBuilder {
fn default() -> Self {
Self::new()
}
}