1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
//! Unix pipe types.
use std::{
future::Future,
io,
os::fd::{FromRawFd, IntoRawFd},
path::Path,
};
use compio_buf::{BufResult, IntoInner, IoBuf, IoBufMut, IoVectoredBuf, IoVectoredBufMut};
use compio_driver::{
impl_raw_fd,
op::{BufResultExt, Recv, RecvVectored, Send, SendVectored},
syscall, AsRawFd, ToSharedFd,
};
use compio_io::{AsyncRead, AsyncWrite};
use crate::File;
/// Creates a pair of anonymous pipe.
///
/// ```
/// use compio_fs::pipe::anonymous;
/// use compio_io::{AsyncReadExt, AsyncWriteExt};
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// let (mut rx, mut tx) = anonymous().unwrap();
///
/// tx.write_all("Hello world!").await.unwrap();
/// let (_, buf) = rx.read_exact(Vec::with_capacity(12)).await.unwrap();
/// assert_eq!(&buf, b"Hello world!");
/// # });
/// ```
pub fn anonymous() -> io::Result<(Receiver, Sender)> {
let (receiver, sender) = os_pipe::pipe()?;
let receiver = Receiver::from_file(File::from_std(unsafe {
std::fs::File::from_raw_fd(receiver.into_raw_fd())
})?)?;
let sender = Sender::from_file(File::from_std(unsafe {
std::fs::File::from_raw_fd(sender.into_raw_fd())
})?)?;
Ok((receiver, sender))
}
/// Options and flags which can be used to configure how a FIFO file is opened.
///
/// This builder allows configuring how to create a pipe end from a FIFO file.
/// Generally speaking, when using `OpenOptions`, you'll first call [`new`],
/// then chain calls to methods to set each option, then call either
/// [`open_receiver`] or [`open_sender`], passing the path of the FIFO file you
/// are trying to open. This will give you a [`io::Result`] with a pipe end
/// inside that you can further operate on.
///
/// [`new`]: OpenOptions::new
/// [`open_receiver`]: OpenOptions::open_receiver
/// [`open_sender`]: OpenOptions::open_sender
///
/// # Examples
///
/// Opening a pair of pipe ends from a FIFO file:
///
/// ```no_run
/// use compio_fs::pipe;
///
/// const FIFO_NAME: &str = "path/to/a/fifo";
///
/// # async fn dox() -> std::io::Result<()> {
/// let rx = pipe::OpenOptions::new().open_receiver(FIFO_NAME).await?;
/// let tx = pipe::OpenOptions::new().open_sender(FIFO_NAME).await?;
/// # Ok(())
/// # }
/// ```
///
/// Opening a [`Sender`] on Linux when you are sure the file is a FIFO:
///
/// ```ignore
/// use compio_fs::pipe;
/// use nix::{sys::stat::Mode, unistd::mkfifo};
///
/// // Our program has exclusive access to this path.
/// const FIFO_NAME: &str = "path/to/a/new/fifo";
///
/// # async fn dox() -> std::io::Result<()> {
/// mkfifo(FIFO_NAME, Mode::S_IRWXU)?;
/// let tx = pipe::OpenOptions::new()
/// .read_write(true)
/// .unchecked(true)
/// .open_sender(FIFO_NAME)?;
/// # Ok(())
/// # }
/// ```
#[derive(Clone, Debug)]
pub struct OpenOptions {
#[cfg(target_os = "linux")]
read_write: bool,
unchecked: bool,
}
impl OpenOptions {
/// Creates a blank new set of options ready for configuration.
///
/// All options are initially set to `false`.
pub fn new() -> OpenOptions {
OpenOptions {
#[cfg(target_os = "linux")]
read_write: false,
unchecked: false,
}
}
/// Sets the option for read-write access.
///
/// This option, when true, will indicate that a FIFO file will be opened
/// in read-write access mode. This operation is not defined by the POSIX
/// standard and is only guaranteed to work on Linux.
///
/// # Examples
///
/// Opening a [`Sender`] even if there are no open reading ends:
///
/// ```
/// use compio_fs::pipe;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// let tx = pipe::OpenOptions::new()
/// .read_write(true)
/// .open_sender("path/to/a/fifo")
/// .await;
/// # });
/// ```
///
/// Opening a resilient [`Receiver`] i.e. a reading pipe end which will not
/// fail with [`UnexpectedEof`] during reading if all writing ends of the
/// pipe close the FIFO file.
///
/// [`UnexpectedEof`]: std::io::ErrorKind::UnexpectedEof
///
/// ```
/// use compio_fs::pipe;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// let tx = pipe::OpenOptions::new()
/// .read_write(true)
/// .open_receiver("path/to/a/fifo")
/// .await;
/// # });
/// ```
#[cfg(target_os = "linux")]
#[cfg_attr(docsrs, doc(cfg(target_os = "linux")))]
pub fn read_write(&mut self, value: bool) -> &mut Self {
self.read_write = value;
self
}
/// Sets the option to skip the check for FIFO file type.
///
/// By default, [`open_receiver`] and [`open_sender`] functions will check
/// if the opened file is a FIFO file. Set this option to `true` if you are
/// sure the file is a FIFO file.
///
/// [`open_receiver`]: OpenOptions::open_receiver
/// [`open_sender`]: OpenOptions::open_sender
///
/// # Examples
///
/// ```no_run
/// use compio_fs::pipe;
/// use nix::{sys::stat::Mode, unistd::mkfifo};
///
/// // Our program has exclusive access to this path.
/// const FIFO_NAME: &str = "path/to/a/new/fifo";
///
/// # async fn dox() -> std::io::Result<()> {
/// mkfifo(FIFO_NAME, Mode::S_IRWXU)?;
/// let rx = pipe::OpenOptions::new()
/// .unchecked(true)
/// .open_receiver(FIFO_NAME)
/// .await?;
/// # Ok(())
/// # }
/// ```
pub fn unchecked(&mut self, value: bool) -> &mut Self {
self.unchecked = value;
self
}
/// Creates a [`Receiver`] from a FIFO file with the options specified by
/// `self`.
///
/// This function will open the FIFO file at the specified path, possibly
/// check if it is a pipe, and associate the pipe with the default event
/// loop for reading.
///
/// # Errors
///
/// If the file type check fails, this function will fail with
/// `io::ErrorKind::InvalidInput`. This function may also fail with
/// other standard OS errors.
pub async fn open_receiver<P: AsRef<Path>>(&self, path: P) -> io::Result<Receiver> {
let file = self.open(path.as_ref(), PipeEnd::Receiver).await?;
Receiver::from_file(file)
}
/// Creates a [`Sender`] from a FIFO file with the options specified by
/// `self`.
///
/// This function will open the FIFO file at the specified path, possibly
/// check if it is a pipe, and associate the pipe with the default event
/// loop for writing.
///
/// # Errors
///
/// If the file type check fails, this function will fail with
/// `io::ErrorKind::InvalidInput`. If the file is not opened in
/// read-write access mode and the file is not currently open for
/// reading, this function will fail with `ENXIO`. This function may
/// also fail with other standard OS errors.
pub async fn open_sender<P: AsRef<Path>>(&self, path: P) -> io::Result<Sender> {
let file = self.open(path.as_ref(), PipeEnd::Sender).await?;
Sender::from_file(file)
}
async fn open(&self, path: &Path, pipe_end: PipeEnd) -> io::Result<File> {
let mut options = crate::OpenOptions::new();
options
.read(pipe_end == PipeEnd::Receiver)
.write(pipe_end == PipeEnd::Sender);
#[cfg(target_os = "linux")]
if self.read_write {
options.read(true).write(true);
}
let file = options.open(path).await?;
if !self.unchecked && !is_fifo(&file).await? {
return Err(io::Error::new(io::ErrorKind::InvalidInput, "not a pipe"));
}
Ok(file)
}
}
impl Default for OpenOptions {
fn default() -> OpenOptions {
OpenOptions::new()
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
enum PipeEnd {
Sender,
Receiver,
}
/// Writing end of a Unix pipe.
///
/// It can be constructed from a FIFO file with [`OpenOptions::open_sender`].
///
/// Opening a named pipe for writing involves a few steps.
/// Call to [`OpenOptions::open_sender`] might fail with an error indicating
/// different things:
///
/// * [`io::ErrorKind::NotFound`] - There is no file at the specified path.
/// * [`io::ErrorKind::InvalidInput`] - The file exists, but it is not a FIFO.
/// * [`ENXIO`] - The file is a FIFO, but no process has it open for reading.
/// Sleep for a while and try again.
/// * Other OS errors not specific to opening FIFO files.
///
/// Opening a `Sender` from a FIFO file should look like this:
///
/// ```no_run
/// use std::time::Duration;
///
/// use compio_fs::pipe;
/// use compio_runtime::time;
///
/// const FIFO_NAME: &str = "path/to/a/fifo";
///
/// # async fn dox() -> std::io::Result<()> {
/// // Wait for a reader to open the file.
/// let tx = loop {
/// match pipe::OpenOptions::new().open_sender(FIFO_NAME).await {
/// Ok(tx) => break tx,
/// Err(e) if e.raw_os_error() == Some(libc::ENXIO) => {}
/// Err(e) => return Err(e.into()),
/// }
///
/// time::sleep(Duration::from_millis(50)).await;
/// };
/// # Ok(())
/// # }
/// ```
///
/// On Linux, it is possible to create a `Sender` without waiting in a sleeping
/// loop. This is done by opening a named pipe in read-write access mode with
/// `OpenOptions::read_write`. This way, a `Sender` can at the same time hold
/// both a writing end and a reading end, and the latter allows to open a FIFO
/// without [`ENXIO`] error since the pipe is open for reading as well.
///
/// `Sender` cannot be used to read from a pipe, so in practice the read access
/// is only used when a FIFO is opened. However, using a `Sender` in read-write
/// mode **may lead to lost data**, because written data will be dropped by the
/// system as soon as all pipe ends are closed. To avoid lost data you have to
/// make sure that a reading end has been opened before dropping a `Sender`.
///
/// Note that using read-write access mode with FIFO files is not defined by
/// the POSIX standard and it is only guaranteed to work on Linux.
///
/// ```ignore
/// use compio_fs::pipe;
/// use compio_io::AsyncWriteExt;
///
/// const FIFO_NAME: &str = "path/to/a/fifo";
///
/// # async fn dox() {
/// let mut tx = pipe::OpenOptions::new()
/// .read_write(true)
/// .open_sender(FIFO_NAME)
/// .unwrap();
///
/// // Asynchronously write to the pipe before a reader.
/// tx.write_all("hello world").await.unwrap();
/// # }
/// ```
///
/// [`ENXIO`]: https://docs.rs/libc/latest/libc/constant.ENXIO.html
#[derive(Debug, Clone)]
pub struct Sender {
file: File,
}
impl Sender {
pub(crate) fn from_file(file: File) -> io::Result<Sender> {
set_nonblocking(&file)?;
Ok(Sender { file })
}
/// Close the pipe. If the returned future is dropped before polling, the
/// pipe won't be closed.
pub fn close(self) -> impl Future<Output = io::Result<()>> {
self.file.close()
}
}
impl AsyncWrite for Sender {
#[inline]
async fn write<T: IoBuf>(&mut self, buf: T) -> BufResult<usize, T> {
(&*self).write(buf).await
}
#[inline]
async fn write_vectored<T: IoVectoredBuf>(&mut self, buf: T) -> BufResult<usize, T> {
(&*self).write_vectored(buf).await
}
#[inline]
async fn flush(&mut self) -> io::Result<()> {
(&*self).flush().await
}
#[inline]
async fn shutdown(&mut self) -> io::Result<()> {
(&*self).shutdown().await
}
}
impl AsyncWrite for &Sender {
async fn write<T: IoBuf>(&mut self, buffer: T) -> BufResult<usize, T> {
let fd = self.to_shared_fd();
let op = Send::new(fd, buffer);
compio_runtime::submit(op).await.into_inner()
}
async fn write_vectored<T: IoVectoredBuf>(&mut self, buffer: T) -> BufResult<usize, T> {
let fd = self.to_shared_fd();
let op = SendVectored::new(fd, buffer);
compio_runtime::submit(op).await.into_inner()
}
#[inline]
async fn flush(&mut self) -> io::Result<()> {
Ok(())
}
#[inline]
async fn shutdown(&mut self) -> io::Result<()> {
Ok(())
}
}
impl_raw_fd!(Sender, std::fs::File, file, file);
/// Reading end of a Unix pipe.
///
/// It can be constructed from a FIFO file with [`OpenOptions::open_receiver`].
///
/// # Examples
///
/// Receiving messages from a named pipe in a loop:
///
/// ```no_run
/// use std::io;
///
/// use compio_buf::BufResult;
/// use compio_fs::pipe;
/// use compio_io::AsyncReadExt;
///
/// const FIFO_NAME: &str = "path/to/a/fifo";
///
/// # async fn dox() -> io::Result<()> {
/// let mut rx = pipe::OpenOptions::new().open_receiver(FIFO_NAME).await?;
/// loop {
/// let mut msg = Vec::with_capacity(256);
/// let BufResult(res, msg) = rx.read_exact(msg).await;
/// match res {
/// Ok(_) => { /* handle the message */ }
/// Err(e) if e.kind() == io::ErrorKind::UnexpectedEof => {
/// // Writing end has been closed, we should reopen the pipe.
/// rx = pipe::OpenOptions::new().open_receiver(FIFO_NAME).await?;
/// }
/// Err(e) => return Err(e.into()),
/// }
/// }
/// # }
/// ```
///
/// On Linux, you can use a `Receiver` in read-write access mode to implement
/// resilient reading from a named pipe. Unlike `Receiver` opened in read-only
/// mode, read from a pipe in read-write mode will not fail with `UnexpectedEof`
/// when the writing end is closed. This way, a `Receiver` can asynchronously
/// wait for the next writer to open the pipe.
///
/// You should not use functions waiting for EOF such as [`read_to_end`] with
/// a `Receiver` in read-write access mode, since it **may wait forever**.
/// `Receiver` in this mode also holds an open writing end, which prevents
/// receiving EOF.
///
/// To set the read-write access mode you can use `OpenOptions::read_write`.
/// Note that using read-write access mode with FIFO files is not defined by
/// the POSIX standard and it is only guaranteed to work on Linux.
///
/// ```ignore
/// use compio_fs::pipe;
/// use compio_io::AsyncReadExt;
///
/// const FIFO_NAME: &str = "path/to/a/fifo";
///
/// # async fn dox() {
/// let mut rx = pipe::OpenOptions::new()
/// .read_write(true)
/// .open_receiver(FIFO_NAME)
/// .unwrap();
/// loop {
/// let mut msg = Vec::with_capacity(256);
/// rx.read_exact(msg).await.unwrap();
/// // handle the message
/// }
/// # }
/// ```
///
/// [`read_to_end`]: compio_io::AsyncReadExt::read_to_end
#[derive(Debug, Clone)]
pub struct Receiver {
file: File,
}
impl Receiver {
pub(crate) fn from_file(file: File) -> io::Result<Receiver> {
set_nonblocking(&file)?;
Ok(Receiver { file })
}
/// Close the pipe. If the returned future is dropped before polling, the
/// pipe won't be closed.
pub fn close(self) -> impl Future<Output = io::Result<()>> {
self.file.close()
}
}
impl AsyncRead for Receiver {
async fn read<B: IoBufMut>(&mut self, buf: B) -> BufResult<usize, B> {
(&*self).read(buf).await
}
async fn read_vectored<V: IoVectoredBufMut>(&mut self, buf: V) -> BufResult<usize, V> {
(&*self).read_vectored(buf).await
}
}
impl AsyncRead for &Receiver {
async fn read<B: IoBufMut>(&mut self, buffer: B) -> BufResult<usize, B> {
let fd = self.to_shared_fd();
let op = Recv::new(fd, buffer);
compio_runtime::submit(op).await.into_inner().map_advanced()
}
async fn read_vectored<V: IoVectoredBufMut>(&mut self, buffer: V) -> BufResult<usize, V> {
let fd = self.to_shared_fd();
let op = RecvVectored::new(fd, buffer);
compio_runtime::submit(op).await.into_inner().map_advanced()
}
}
impl_raw_fd!(Receiver, std::fs::File, file, file);
/// Checks if file is a FIFO
async fn is_fifo(file: &File) -> io::Result<bool> {
use std::os::unix::prelude::FileTypeExt;
Ok(file.metadata().await?.file_type().is_fifo())
}
/// Sets file's flags with O_NONBLOCK by fcntl.
fn set_nonblocking(file: &impl AsRawFd) -> io::Result<()> {
if cfg!(not(all(target_os = "linux", feature = "io-uring"))) {
let fd = file.as_raw_fd();
let current_flags = syscall!(libc::fcntl(fd, libc::F_GETFL))?;
let flags = current_flags | libc::O_NONBLOCK;
if flags != current_flags {
syscall!(libc::fcntl(fd, libc::F_SETFL, flags))?;
}
}
Ok(())
}