1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
use std::future::ready;
use compio_buf::{buf_try, BufResult, IntoInner, IoBuf, IoVectoredBuf};
use crate::{
buffer::Buffer,
util::{slice_to_buf, DEFAULT_BUF_SIZE},
AsyncWrite, IoResult,
};
/// Wraps a writer and buffers its output.
///
/// It can be excessively inefficient to work directly with something that
/// implements [`AsyncWrite`]. A `BufWriter<W>` keeps an in-memory buffer of
/// data and writes it to an underlying writer in large, infrequent batches.
//
/// `BufWriter<W>` can improve the speed of programs that make *small* and
/// *repeated* write calls to the same file or network socket. It does not
/// help when writing very large amounts at once, or writing just one or a few
/// times. It also provides no advantage when writing to a destination that is
/// in memory, like a `Vec<u8>`.
///
/// Dropping `BufWriter<W>` also discards any bytes left in the buffer, so it is
/// critical to call [`flush`] before `BufWriter<W>` is dropped. Calling
/// [`flush`] ensures that the buffer is empty and thus no data is lost.
///
/// [`flush`]: AsyncWrite::flush
#[derive(Debug)]
pub struct BufWriter<W> {
writer: W,
buf: Buffer,
}
impl<W> BufWriter<W> {
/// Creates a new `BufWriter` with a default buffer capacity. The default is
/// currently 8 KB, but may change in the future.
pub fn new(writer: W) -> Self {
Self::with_capacity(DEFAULT_BUF_SIZE, writer)
}
/// Creates a new `BufWriter` with the specified buffer capacity.
pub fn with_capacity(cap: usize, writer: W) -> Self {
Self {
writer,
buf: Buffer::with_capacity(cap),
}
}
}
impl<W: AsyncWrite> BufWriter<W> {
async fn flush_if_needed(&mut self) -> IoResult<()> {
if self.buf.need_flush() {
self.flush().await?;
}
Ok(())
}
}
impl<W: AsyncWrite> AsyncWrite for BufWriter<W> {
async fn write<T: IoBuf>(&mut self, mut buf: T) -> BufResult<usize, T> {
// The previous flush may error because disk full. We need to make the buffer
// all-done before writing new data to it.
(_, buf) = buf_try!(self.flush_if_needed().await, buf);
let written = self
.buf
.with_sync(|w| {
let len = w.buf_len();
let mut w = w.slice(len..);
let written = slice_to_buf(buf.as_slice(), &mut w);
BufResult(Ok(written), w.into_inner())
})
.expect("Closure always return Ok");
(_, buf) = buf_try!(self.flush_if_needed().await, buf);
BufResult(Ok(written), buf)
}
async fn write_vectored<T: IoVectoredBuf>(&mut self, mut buf: T) -> BufResult<usize, T> {
(_, buf) = buf_try!(self.flush_if_needed().await, buf);
let written = self
.buf
.with(|mut w| {
let mut written = 0;
for buf in buf.iter_buf() {
let len = w.buf_len();
let mut slice = w.slice(len..);
written += slice_to_buf(buf.as_slice(), &mut slice);
w = slice.into_inner();
if w.buf_len() == w.buf_capacity() {
break;
}
}
ready(BufResult(Ok(written), w))
})
.await
.expect("Closure always return Ok");
(_, buf) = buf_try!(self.flush_if_needed().await, buf);
BufResult(Ok(written), buf)
}
async fn flush(&mut self) -> IoResult<()> {
let Self { writer, buf } = self;
buf.flush_to(writer).await?;
Ok(())
}
async fn shutdown(&mut self) -> IoResult<()> {
self.flush().await?;
self.writer.shutdown().await
}
}
impl<W> IntoInner for BufWriter<W> {
type Inner = W;
fn into_inner(self) -> Self::Inner {
self.writer
}
}