compio_net/udp.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
use std::{future::Future, io, net::SocketAddr};
use compio_buf::{BufResult, IoBuf, IoBufMut, IoVectoredBuf, IoVectoredBufMut};
use compio_driver::impl_raw_fd;
use socket2::{Protocol, SockAddr, Socket as Socket2, Type};
use crate::{Socket, ToSocketAddrsAsync};
/// A UDP socket.
///
/// UDP is "connectionless", unlike TCP. Meaning, regardless of what address
/// you've bound to, a `UdpSocket` is free to communicate with many different
/// remotes. There are basically two main ways to use `UdpSocket`:
///
/// * one to many: [`bind`](`UdpSocket::bind`) and use
/// [`send_to`](`UdpSocket::send_to`) and
/// [`recv_from`](`UdpSocket::recv_from`) to communicate with many different
/// addresses
/// * one to one: [`connect`](`UdpSocket::connect`) and associate with a single
/// address, using [`send`](`UdpSocket::send`) and [`recv`](`UdpSocket::recv`)
/// to communicate only with that remote address
///
/// # Examples
/// Bind and connect a pair of sockets and send a packet:
///
/// ```
/// use std::net::SocketAddr;
///
/// use compio_net::UdpSocket;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// let first_addr: SocketAddr = "127.0.0.1:0".parse().unwrap();
/// let second_addr: SocketAddr = "127.0.0.1:0".parse().unwrap();
///
/// // bind sockets
/// let mut socket = UdpSocket::bind(first_addr).await.unwrap();
/// let first_addr = socket.local_addr().unwrap();
/// let mut other_socket = UdpSocket::bind(second_addr).await.unwrap();
/// let second_addr = other_socket.local_addr().unwrap();
///
/// // connect sockets
/// socket.connect(second_addr).await.unwrap();
/// other_socket.connect(first_addr).await.unwrap();
///
/// let buf = Vec::with_capacity(12);
///
/// // write data
/// socket.send("Hello world!").await.unwrap();
///
/// // read data
/// let (n_bytes, buf) = other_socket.recv(buf).await.unwrap();
///
/// assert_eq!(n_bytes, buf.len());
/// assert_eq!(buf, b"Hello world!");
/// # });
/// ```
/// Send and receive packets without connecting:
///
/// ```
/// use std::net::SocketAddr;
///
/// use compio_net::UdpSocket;
/// use socket2::SockAddr;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// let first_addr: SocketAddr = "127.0.0.1:0".parse().unwrap();
/// let second_addr: SocketAddr = "127.0.0.1:0".parse().unwrap();
///
/// // bind sockets
/// let mut socket = UdpSocket::bind(first_addr).await.unwrap();
/// let first_addr = socket.local_addr().unwrap();
/// let mut other_socket = UdpSocket::bind(second_addr).await.unwrap();
/// let second_addr = other_socket.local_addr().unwrap();
///
/// let buf = Vec::with_capacity(32);
///
/// // write data
/// socket.send_to("hello world", second_addr).await.unwrap();
///
/// // read data
/// let ((n_bytes, addr), buf) = other_socket.recv_from(buf).await.unwrap();
///
/// assert_eq!(addr, first_addr);
/// assert_eq!(n_bytes, buf.len());
/// assert_eq!(buf, b"hello world");
/// # });
/// ```
#[derive(Debug, Clone)]
pub struct UdpSocket {
inner: Socket,
}
impl UdpSocket {
/// Creates a new UDP socket and attempt to bind it to the addr provided.
pub async fn bind(addr: impl ToSocketAddrsAsync) -> io::Result<Self> {
super::each_addr(addr, |addr| async move {
Ok(Self {
inner: Socket::bind(&SockAddr::from(addr), Type::DGRAM, Some(Protocol::UDP))
.await?,
})
})
.await
}
/// Connects this UDP socket to a remote address, allowing the `send` and
/// `recv` to be used to send data and also applies filters to only
/// receive data from the specified address.
///
/// Note that usually, a successful `connect` call does not specify
/// that there is a remote server listening on the port, rather, such an
/// error would only be detected after the first send.
pub async fn connect(&self, addr: impl ToSocketAddrsAsync) -> io::Result<()> {
super::each_addr(addr, |addr| async move {
self.inner.connect(&SockAddr::from(addr))
})
.await
}
/// Creates new UdpSocket from a std::net::UdpSocket.
pub fn from_std(socket: std::net::UdpSocket) -> io::Result<Self> {
Ok(Self {
inner: Socket::from_socket2(Socket2::from(socket))?,
})
}
/// Close the socket. If the returned future is dropped before polling, the
/// socket won't be closed.
pub fn close(self) -> impl Future<Output = io::Result<()>> {
self.inner.close()
}
/// Returns the socket address of the remote peer this socket was connected
/// to.
///
/// # Examples
///
/// ```no_run
/// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4};
///
/// use compio_net::UdpSocket;
/// use socket2::SockAddr;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:34254")
/// .await
/// .expect("couldn't bind to address");
/// socket
/// .connect("192.168.0.1:41203")
/// .await
/// .expect("couldn't connect to address");
/// assert_eq!(
/// socket.peer_addr().unwrap(),
/// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(192, 168, 0, 1), 41203))
/// );
/// # });
/// ```
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.inner
.peer_addr()
.map(|addr| addr.as_socket().expect("should be SocketAddr"))
}
/// Returns the local address that this socket is bound to.
///
/// # Example
///
/// ```
/// use std::net::SocketAddr;
///
/// use compio_net::UdpSocket;
/// use socket2::SockAddr;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// let addr: SocketAddr = "127.0.0.1:8080".parse().unwrap();
/// let sock = UdpSocket::bind(&addr).await.unwrap();
/// // the address the socket is bound to
/// let local_addr = sock.local_addr().unwrap();
/// assert_eq!(local_addr, addr);
/// # });
/// ```
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.inner
.local_addr()
.map(|addr| addr.as_socket().expect("should be SocketAddr"))
}
/// Receives a packet of data from the socket into the buffer, returning the
/// original buffer and quantity of data received.
pub async fn recv<T: IoBufMut>(&self, buffer: T) -> BufResult<usize, T> {
self.inner.recv(buffer).await
}
/// Receives a packet of data from the socket into the buffer, returning the
/// original buffer and quantity of data received.
pub async fn recv_vectored<T: IoVectoredBufMut>(&self, buffer: T) -> BufResult<usize, T> {
self.inner.recv_vectored(buffer).await
}
/// Sends some data to the socket from the buffer, returning the original
/// buffer and quantity of data sent.
pub async fn send<T: IoBuf>(&self, buffer: T) -> BufResult<usize, T> {
self.inner.send(buffer).await
}
/// Sends some data to the socket from the buffer, returning the original
/// buffer and quantity of data sent.
pub async fn send_vectored<T: IoVectoredBuf>(&self, buffer: T) -> BufResult<usize, T> {
self.inner.send_vectored(buffer).await
}
/// Receives a single datagram message on the socket. On success, returns
/// the number of bytes received and the origin.
pub async fn recv_from<T: IoBufMut>(&self, buffer: T) -> BufResult<(usize, SocketAddr), T> {
self.inner
.recv_from(buffer)
.await
.map_res(|(n, addr)| (n, addr.as_socket().expect("should be SocketAddr")))
}
/// Receives a single datagram message on the socket. On success, returns
/// the number of bytes received and the origin.
pub async fn recv_from_vectored<T: IoVectoredBufMut>(
&self,
buffer: T,
) -> BufResult<(usize, SocketAddr), T> {
self.inner
.recv_from_vectored(buffer)
.await
.map_res(|(n, addr)| (n, addr.as_socket().expect("should be SocketAddr")))
}
/// Receives a single datagram message and ancillary data on the socket. On
/// success, returns the number of bytes received and the origin.
pub async fn recv_msg<T: IoBufMut, C: IoBufMut>(
&self,
buffer: T,
control: C,
) -> BufResult<(usize, usize, SocketAddr), (T, C)> {
self.inner
.recv_msg(buffer, control)
.await
.map_res(|(n, m, addr)| (n, m, addr.as_socket().expect("should be SocketAddr")))
}
/// Receives a single datagram message and ancillary data on the socket. On
/// success, returns the number of bytes received and the origin.
pub async fn recv_msg_vectored<T: IoVectoredBufMut, C: IoBufMut>(
&self,
buffer: T,
control: C,
) -> BufResult<(usize, usize, SocketAddr), (T, C)> {
self.inner
.recv_msg_vectored(buffer, control)
.await
.map_res(|(n, m, addr)| (n, m, addr.as_socket().expect("should be SocketAddr")))
}
/// Sends data on the socket to the given address. On success, returns the
/// number of bytes sent.
pub async fn send_to<T: IoBuf>(
&self,
buffer: T,
addr: impl ToSocketAddrsAsync,
) -> BufResult<usize, T> {
super::first_addr_buf(addr, buffer, |addr, buffer| async move {
self.inner.send_to(buffer, &SockAddr::from(addr)).await
})
.await
}
/// Sends data on the socket to the given address. On success, returns the
/// number of bytes sent.
pub async fn send_to_vectored<T: IoVectoredBuf>(
&self,
buffer: T,
addr: impl ToSocketAddrsAsync,
) -> BufResult<usize, T> {
super::first_addr_buf(addr, buffer, |addr, buffer| async move {
self.inner
.send_to_vectored(buffer, &SockAddr::from(addr))
.await
})
.await
}
/// Sends data on the socket to the given address accompanied by ancillary
/// data. On success, returns the number of bytes sent.
pub async fn send_msg<T: IoBuf, C: IoBuf>(
&self,
buffer: T,
control: C,
addr: impl ToSocketAddrsAsync,
) -> BufResult<usize, (T, C)> {
super::first_addr_buf(
addr,
(buffer, control),
|addr, (buffer, control)| async move {
self.inner
.send_msg(buffer, control, &SockAddr::from(addr))
.await
},
)
.await
}
/// Sends data on the socket to the given address accompanied by ancillary
/// data. On success, returns the number of bytes sent.
pub async fn send_msg_vectored<T: IoVectoredBuf, C: IoBuf>(
&self,
buffer: T,
control: C,
addr: impl ToSocketAddrsAsync,
) -> BufResult<usize, (T, C)> {
super::first_addr_buf(
addr,
(buffer, control),
|addr, (buffer, control)| async move {
self.inner
.send_msg_vectored(buffer, control, &SockAddr::from(addr))
.await
},
)
.await
}
/// Gets a socket option.
///
/// # Safety
///
/// The caller must ensure `T` is the correct type for `level` and `name`.
pub unsafe fn get_socket_option<T: Copy>(&self, level: i32, name: i32) -> io::Result<T> {
self.inner.get_socket_option(level, name)
}
/// Sets a socket option.
///
/// # Safety
///
/// The caller must ensure `T` is the correct type for `level` and `name`.
pub unsafe fn set_socket_option<T: Copy>(
&self,
level: i32,
name: i32,
value: &T,
) -> io::Result<()> {
self.inner.set_socket_option(level, name, value)
}
}
impl_raw_fd!(UdpSocket, socket2::Socket, inner, socket);