compio_net/
udp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
use std::{future::Future, io, net::SocketAddr};

use compio_buf::{BufResult, IoBuf, IoBufMut, IoVectoredBuf, IoVectoredBufMut};
use compio_driver::impl_raw_fd;
use socket2::{Protocol, SockAddr, Socket as Socket2, Type};

use crate::{Socket, ToSocketAddrsAsync};

/// A UDP socket.
///
/// UDP is "connectionless", unlike TCP. Meaning, regardless of what address
/// you've bound to, a `UdpSocket` is free to communicate with many different
/// remotes. There are basically two main ways to use `UdpSocket`:
///
/// * one to many: [`bind`](`UdpSocket::bind`) and use
///   [`send_to`](`UdpSocket::send_to`) and
///   [`recv_from`](`UdpSocket::recv_from`) to communicate with many different
///   addresses
/// * one to one: [`connect`](`UdpSocket::connect`) and associate with a single
///   address, using [`send`](`UdpSocket::send`) and [`recv`](`UdpSocket::recv`)
///   to communicate only with that remote address
///
/// # Examples
/// Bind and connect a pair of sockets and send a packet:
///
/// ```
/// use std::net::SocketAddr;
///
/// use compio_net::UdpSocket;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// let first_addr: SocketAddr = "127.0.0.1:0".parse().unwrap();
/// let second_addr: SocketAddr = "127.0.0.1:0".parse().unwrap();
///
/// // bind sockets
/// let mut socket = UdpSocket::bind(first_addr).await.unwrap();
/// let first_addr = socket.local_addr().unwrap();
/// let mut other_socket = UdpSocket::bind(second_addr).await.unwrap();
/// let second_addr = other_socket.local_addr().unwrap();
///
/// // connect sockets
/// socket.connect(second_addr).await.unwrap();
/// other_socket.connect(first_addr).await.unwrap();
///
/// let buf = Vec::with_capacity(12);
///
/// // write data
/// socket.send("Hello world!").await.unwrap();
///
/// // read data
/// let (n_bytes, buf) = other_socket.recv(buf).await.unwrap();
///
/// assert_eq!(n_bytes, buf.len());
/// assert_eq!(buf, b"Hello world!");
/// # });
/// ```
/// Send and receive packets without connecting:
///
/// ```
/// use std::net::SocketAddr;
///
/// use compio_net::UdpSocket;
/// use socket2::SockAddr;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// let first_addr: SocketAddr = "127.0.0.1:0".parse().unwrap();
/// let second_addr: SocketAddr = "127.0.0.1:0".parse().unwrap();
///
/// // bind sockets
/// let mut socket = UdpSocket::bind(first_addr).await.unwrap();
/// let first_addr = socket.local_addr().unwrap();
/// let mut other_socket = UdpSocket::bind(second_addr).await.unwrap();
/// let second_addr = other_socket.local_addr().unwrap();
///
/// let buf = Vec::with_capacity(32);
///
/// // write data
/// socket.send_to("hello world", second_addr).await.unwrap();
///
/// // read data
/// let ((n_bytes, addr), buf) = other_socket.recv_from(buf).await.unwrap();
///
/// assert_eq!(addr, first_addr);
/// assert_eq!(n_bytes, buf.len());
/// assert_eq!(buf, b"hello world");
/// # });
/// ```
#[derive(Debug, Clone)]
pub struct UdpSocket {
    inner: Socket,
}

impl UdpSocket {
    /// Creates a new UDP socket and attempt to bind it to the addr provided.
    pub async fn bind(addr: impl ToSocketAddrsAsync) -> io::Result<Self> {
        super::each_addr(addr, |addr| async move {
            Ok(Self {
                inner: Socket::bind(&SockAddr::from(addr), Type::DGRAM, Some(Protocol::UDP))
                    .await?,
            })
        })
        .await
    }

    /// Connects this UDP socket to a remote address, allowing the `send` and
    /// `recv` to be used to send data and also applies filters to only
    /// receive data from the specified address.
    ///
    /// Note that usually, a successful `connect` call does not specify
    /// that there is a remote server listening on the port, rather, such an
    /// error would only be detected after the first send.
    pub async fn connect(&self, addr: impl ToSocketAddrsAsync) -> io::Result<()> {
        super::each_addr(addr, |addr| async move {
            self.inner.connect(&SockAddr::from(addr))
        })
        .await
    }

    /// Creates new UdpSocket from a std::net::UdpSocket.
    pub fn from_std(socket: std::net::UdpSocket) -> io::Result<Self> {
        Ok(Self {
            inner: Socket::from_socket2(Socket2::from(socket))?,
        })
    }

    /// Close the socket. If the returned future is dropped before polling, the
    /// socket won't be closed.
    pub fn close(self) -> impl Future<Output = io::Result<()>> {
        self.inner.close()
    }

    /// Returns the socket address of the remote peer this socket was connected
    /// to.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4};
    ///
    /// use compio_net::UdpSocket;
    /// use socket2::SockAddr;
    ///
    /// # compio_runtime::Runtime::new().unwrap().block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254")
    ///     .await
    ///     .expect("couldn't bind to address");
    /// socket
    ///     .connect("192.168.0.1:41203")
    ///     .await
    ///     .expect("couldn't connect to address");
    /// assert_eq!(
    ///     socket.peer_addr().unwrap(),
    ///     SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(192, 168, 0, 1), 41203))
    /// );
    /// # });
    /// ```
    pub fn peer_addr(&self) -> io::Result<SocketAddr> {
        self.inner
            .peer_addr()
            .map(|addr| addr.as_socket().expect("should be SocketAddr"))
    }

    /// Returns the local address that this socket is bound to.
    ///
    /// # Example
    ///
    /// ```
    /// use std::net::SocketAddr;
    ///
    /// use compio_net::UdpSocket;
    /// use socket2::SockAddr;
    ///
    /// # compio_runtime::Runtime::new().unwrap().block_on(async {
    /// let addr: SocketAddr = "127.0.0.1:8080".parse().unwrap();
    /// let sock = UdpSocket::bind(&addr).await.unwrap();
    /// // the address the socket is bound to
    /// let local_addr = sock.local_addr().unwrap();
    /// assert_eq!(local_addr, addr);
    /// # });
    /// ```
    pub fn local_addr(&self) -> io::Result<SocketAddr> {
        self.inner
            .local_addr()
            .map(|addr| addr.as_socket().expect("should be SocketAddr"))
    }

    /// Receives a packet of data from the socket into the buffer, returning the
    /// original buffer and quantity of data received.
    pub async fn recv<T: IoBufMut>(&self, buffer: T) -> BufResult<usize, T> {
        self.inner.recv(buffer).await
    }

    /// Receives a packet of data from the socket into the buffer, returning the
    /// original buffer and quantity of data received.
    pub async fn recv_vectored<T: IoVectoredBufMut>(&self, buffer: T) -> BufResult<usize, T> {
        self.inner.recv_vectored(buffer).await
    }

    /// Sends some data to the socket from the buffer, returning the original
    /// buffer and quantity of data sent.
    pub async fn send<T: IoBuf>(&self, buffer: T) -> BufResult<usize, T> {
        self.inner.send(buffer).await
    }

    /// Sends some data to the socket from the buffer, returning the original
    /// buffer and quantity of data sent.
    pub async fn send_vectored<T: IoVectoredBuf>(&self, buffer: T) -> BufResult<usize, T> {
        self.inner.send_vectored(buffer).await
    }

    /// Receives a single datagram message on the socket. On success, returns
    /// the number of bytes received and the origin.
    pub async fn recv_from<T: IoBufMut>(&self, buffer: T) -> BufResult<(usize, SocketAddr), T> {
        self.inner
            .recv_from(buffer)
            .await
            .map_res(|(n, addr)| (n, addr.as_socket().expect("should be SocketAddr")))
    }

    /// Receives a single datagram message on the socket. On success, returns
    /// the number of bytes received and the origin.
    pub async fn recv_from_vectored<T: IoVectoredBufMut>(
        &self,
        buffer: T,
    ) -> BufResult<(usize, SocketAddr), T> {
        self.inner
            .recv_from_vectored(buffer)
            .await
            .map_res(|(n, addr)| (n, addr.as_socket().expect("should be SocketAddr")))
    }

    /// Receives a single datagram message and ancillary data on the socket. On
    /// success, returns the number of bytes received and the origin.
    pub async fn recv_msg<T: IoBufMut, C: IoBufMut>(
        &self,
        buffer: T,
        control: C,
    ) -> BufResult<(usize, usize, SocketAddr), (T, C)> {
        self.inner
            .recv_msg(buffer, control)
            .await
            .map_res(|(n, m, addr)| (n, m, addr.as_socket().expect("should be SocketAddr")))
    }

    /// Receives a single datagram message and ancillary data on the socket. On
    /// success, returns the number of bytes received and the origin.
    pub async fn recv_msg_vectored<T: IoVectoredBufMut, C: IoBufMut>(
        &self,
        buffer: T,
        control: C,
    ) -> BufResult<(usize, usize, SocketAddr), (T, C)> {
        self.inner
            .recv_msg_vectored(buffer, control)
            .await
            .map_res(|(n, m, addr)| (n, m, addr.as_socket().expect("should be SocketAddr")))
    }

    /// Sends data on the socket to the given address. On success, returns the
    /// number of bytes sent.
    pub async fn send_to<T: IoBuf>(
        &self,
        buffer: T,
        addr: impl ToSocketAddrsAsync,
    ) -> BufResult<usize, T> {
        super::first_addr_buf(addr, buffer, |addr, buffer| async move {
            self.inner.send_to(buffer, &SockAddr::from(addr)).await
        })
        .await
    }

    /// Sends data on the socket to the given address. On success, returns the
    /// number of bytes sent.
    pub async fn send_to_vectored<T: IoVectoredBuf>(
        &self,
        buffer: T,
        addr: impl ToSocketAddrsAsync,
    ) -> BufResult<usize, T> {
        super::first_addr_buf(addr, buffer, |addr, buffer| async move {
            self.inner
                .send_to_vectored(buffer, &SockAddr::from(addr))
                .await
        })
        .await
    }

    /// Sends data on the socket to the given address accompanied by ancillary
    /// data. On success, returns the number of bytes sent.
    pub async fn send_msg<T: IoBuf, C: IoBuf>(
        &self,
        buffer: T,
        control: C,
        addr: impl ToSocketAddrsAsync,
    ) -> BufResult<usize, (T, C)> {
        super::first_addr_buf(
            addr,
            (buffer, control),
            |addr, (buffer, control)| async move {
                self.inner
                    .send_msg(buffer, control, &SockAddr::from(addr))
                    .await
            },
        )
        .await
    }

    /// Sends data on the socket to the given address accompanied by ancillary
    /// data. On success, returns the number of bytes sent.
    pub async fn send_msg_vectored<T: IoVectoredBuf, C: IoBuf>(
        &self,
        buffer: T,
        control: C,
        addr: impl ToSocketAddrsAsync,
    ) -> BufResult<usize, (T, C)> {
        super::first_addr_buf(
            addr,
            (buffer, control),
            |addr, (buffer, control)| async move {
                self.inner
                    .send_msg_vectored(buffer, control, &SockAddr::from(addr))
                    .await
            },
        )
        .await
    }

    /// Gets a socket option.
    ///
    /// # Safety
    ///
    /// The caller must ensure `T` is the correct type for `level` and `name`.
    pub unsafe fn get_socket_option<T: Copy>(&self, level: i32, name: i32) -> io::Result<T> {
        self.inner.get_socket_option(level, name)
    }

    /// Sets a socket option.
    ///
    /// # Safety
    ///
    /// The caller must ensure `T` is the correct type for `level` and `name`.
    pub unsafe fn set_socket_option<T: Copy>(
        &self,
        level: i32,
        name: i32,
        value: &T,
    ) -> io::Result<()> {
        self.inner.set_socket_option(level, name, value)
    }
}

impl_raw_fd!(UdpSocket, socket2::Socket, inner, socket);