compio_net/
unix.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
use std::{future::Future, io, path::Path};

use compio_buf::{BufResult, IoBuf, IoBufMut, IoVectoredBuf, IoVectoredBufMut};
use compio_driver::impl_raw_fd;
use compio_io::{AsyncRead, AsyncWrite};
use socket2::{SockAddr, Socket as Socket2, Type};

use crate::{OwnedReadHalf, OwnedWriteHalf, PollFd, ReadHalf, Socket, WriteHalf};

/// A Unix socket server, listening for connections.
///
/// You can accept a new connection by using the [`UnixListener::accept`]
/// method.
///
/// # Examples
///
/// ```
/// use compio_io::{AsyncReadExt, AsyncWriteExt};
/// use compio_net::{UnixListener, UnixStream};
/// use tempfile::tempdir;
///
/// let dir = tempdir().unwrap();
/// let sock_file = dir.path().join("unix-server.sock");
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async move {
/// let listener = UnixListener::bind(&sock_file).await.unwrap();
///
/// let (mut tx, (mut rx, _)) =
///     futures_util::try_join!(UnixStream::connect(&sock_file), listener.accept()).unwrap();
///
/// tx.write_all("test").await.0.unwrap();
///
/// let (_, buf) = rx.read_exact(Vec::with_capacity(4)).await.unwrap();
///
/// assert_eq!(buf, b"test");
/// # });
/// ```
#[derive(Debug, Clone)]
pub struct UnixListener {
    inner: Socket,
}

impl UnixListener {
    /// Creates a new [`UnixListener`], which will be bound to the specified
    /// file path. The file path cannot yet exist, and will be cleaned up
    /// upon dropping [`UnixListener`]
    pub async fn bind(path: impl AsRef<Path>) -> io::Result<Self> {
        Self::bind_addr(&SockAddr::unix(path)?).await
    }

    /// Creates a new [`UnixListener`] with [`SockAddr`], which will be bound to
    /// the specified file path. The file path cannot yet exist, and will be
    /// cleaned up upon dropping [`UnixListener`]
    pub async fn bind_addr(addr: &SockAddr) -> io::Result<Self> {
        if !addr.is_unix() {
            return Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                "addr is not unix socket address",
            ));
        }

        let socket = Socket::bind(addr, Type::STREAM, None).await?;
        socket.listen(1024)?;
        Ok(UnixListener { inner: socket })
    }

    /// Close the socket. If the returned future is dropped before polling, the
    /// socket won't be closed.
    pub fn close(self) -> impl Future<Output = io::Result<()>> {
        self.inner.close()
    }

    /// Accepts a new incoming connection from this listener.
    ///
    /// This function will yield once a new Unix domain socket connection
    /// is established. When established, the corresponding [`UnixStream`] and
    /// will be returned.
    pub async fn accept(&self) -> io::Result<(UnixStream, SockAddr)> {
        let (socket, addr) = self.inner.accept().await?;
        let stream = UnixStream { inner: socket };
        Ok((stream, addr))
    }

    /// Returns the local address that this listener is bound to.
    pub fn local_addr(&self) -> io::Result<SockAddr> {
        self.inner.local_addr()
    }
}

impl_raw_fd!(UnixListener, socket2::Socket, inner, socket);

/// A Unix stream between two local sockets on Windows & WSL.
///
/// A Unix stream can either be created by connecting to an endpoint, via the
/// `connect` method, or by accepting a connection from a listener.
///
/// # Examples
///
/// ```no_run
/// use compio_io::AsyncWrite;
/// use compio_net::UnixStream;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// // Connect to a peer
/// let mut stream = UnixStream::connect("unix-server.sock").await.unwrap();
///
/// // Write some data.
/// stream.write("hello world!").await.unwrap();
/// # })
/// ```
#[derive(Debug, Clone)]
pub struct UnixStream {
    inner: Socket,
}

impl UnixStream {
    /// Opens a Unix connection to the specified file path. There must be a
    /// [`UnixListener`] or equivalent listening on the corresponding Unix
    /// domain socket to successfully connect and return a `UnixStream`.
    pub async fn connect(path: impl AsRef<Path>) -> io::Result<Self> {
        Self::connect_addr(&SockAddr::unix(path)?).await
    }

    /// Opens a Unix connection to the specified address. There must be a
    /// [`UnixListener`] or equivalent listening on the corresponding Unix
    /// domain socket to successfully connect and return a `UnixStream`.
    pub async fn connect_addr(addr: &SockAddr) -> io::Result<Self> {
        if !addr.is_unix() {
            return Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                "addr is not unix socket address",
            ));
        }

        #[cfg(windows)]
        let socket = {
            let new_addr = empty_unix_socket();
            Socket::bind(&new_addr, Type::STREAM, None).await?
        };
        #[cfg(unix)]
        let socket = {
            use socket2::Domain;
            Socket::new(Domain::UNIX, Type::STREAM, None).await?
        };
        socket.connect_async(addr).await?;
        let unix_stream = UnixStream { inner: socket };
        Ok(unix_stream)
    }

    #[cfg(unix)]
    /// Creates new UnixStream from a std::os::unix::net::UnixStream.
    pub fn from_std(stream: std::os::unix::net::UnixStream) -> io::Result<Self> {
        Ok(Self {
            inner: Socket::from_socket2(Socket2::from(stream))?,
        })
    }

    /// Close the socket. If the returned future is dropped before polling, the
    /// socket won't be closed.
    pub fn close(self) -> impl Future<Output = io::Result<()>> {
        self.inner.close()
    }

    /// Returns the socket path of the remote peer of this connection.
    pub fn peer_addr(&self) -> io::Result<SockAddr> {
        #[allow(unused_mut)]
        let mut addr = self.inner.peer_addr()?;
        #[cfg(windows)]
        {
            fix_unix_socket_length(&mut addr);
        }
        Ok(addr)
    }

    /// Returns the socket path of the local half of this connection.
    pub fn local_addr(&self) -> io::Result<SockAddr> {
        self.inner.local_addr()
    }

    /// Splits a [`UnixStream`] into a read half and a write half, which can be
    /// used to read and write the stream concurrently.
    ///
    /// This method is more efficient than
    /// [`into_split`](UnixStream::into_split), but the halves cannot
    /// be moved into independently spawned tasks.
    pub fn split(&self) -> (ReadHalf<Self>, WriteHalf<Self>) {
        crate::split(self)
    }

    /// Splits a [`UnixStream`] into a read half and a write half, which can be
    /// used to read and write the stream concurrently.
    ///
    /// Unlike [`split`](UnixStream::split), the owned halves can be moved to
    /// separate tasks, however this comes at the cost of a heap allocation.
    pub fn into_split(self) -> (OwnedReadHalf<Self>, OwnedWriteHalf<Self>) {
        crate::into_split(self)
    }

    /// Create [`PollFd`] from inner socket.
    pub fn to_poll_fd(&self) -> io::Result<PollFd<Socket2>> {
        self.inner.to_poll_fd()
    }

    /// Create [`PollFd`] from inner socket.
    pub fn into_poll_fd(self) -> io::Result<PollFd<Socket2>> {
        self.inner.into_poll_fd()
    }
}

impl AsyncRead for UnixStream {
    #[inline]
    async fn read<B: IoBufMut>(&mut self, buf: B) -> BufResult<usize, B> {
        (&*self).read(buf).await
    }

    #[inline]
    async fn read_vectored<V: IoVectoredBufMut>(&mut self, buf: V) -> BufResult<usize, V> {
        (&*self).read_vectored(buf).await
    }
}

impl AsyncRead for &UnixStream {
    #[inline]
    async fn read<B: IoBufMut>(&mut self, buf: B) -> BufResult<usize, B> {
        self.inner.recv(buf).await
    }

    #[inline]
    async fn read_vectored<V: IoVectoredBufMut>(&mut self, buf: V) -> BufResult<usize, V> {
        self.inner.recv_vectored(buf).await
    }
}

impl AsyncWrite for UnixStream {
    #[inline]
    async fn write<T: IoBuf>(&mut self, buf: T) -> BufResult<usize, T> {
        (&*self).write(buf).await
    }

    #[inline]
    async fn write_vectored<T: IoVectoredBuf>(&mut self, buf: T) -> BufResult<usize, T> {
        (&*self).write_vectored(buf).await
    }

    #[inline]
    async fn flush(&mut self) -> io::Result<()> {
        (&*self).flush().await
    }

    #[inline]
    async fn shutdown(&mut self) -> io::Result<()> {
        (&*self).shutdown().await
    }
}

impl AsyncWrite for &UnixStream {
    #[inline]
    async fn write<T: IoBuf>(&mut self, buf: T) -> BufResult<usize, T> {
        self.inner.send(buf).await
    }

    #[inline]
    async fn write_vectored<T: IoVectoredBuf>(&mut self, buf: T) -> BufResult<usize, T> {
        self.inner.send_vectored(buf).await
    }

    #[inline]
    async fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }

    #[inline]
    async fn shutdown(&mut self) -> io::Result<()> {
        self.inner.shutdown().await
    }
}

impl_raw_fd!(UnixStream, socket2::Socket, inner, socket);

#[cfg(windows)]
#[inline]
fn empty_unix_socket() -> SockAddr {
    use windows_sys::Win32::Networking::WinSock::{AF_UNIX, SOCKADDR_UN};

    // SAFETY: the length is correct
    unsafe {
        SockAddr::try_init(|addr, len| {
            let addr: *mut SOCKADDR_UN = addr.cast();
            std::ptr::write(
                addr,
                SOCKADDR_UN {
                    sun_family: AF_UNIX,
                    sun_path: [0; 108],
                },
            );
            std::ptr::write(len, 3);
            Ok(())
        })
    }
    // it is always Ok
    .unwrap()
    .1
}

// The peer addr returned after ConnectEx is buggy. It contains bytes that
// should not belong to the address. Luckily a unix path should not contain `\0`
// until the end. We can determine the path ending by that.
#[cfg(windows)]
#[inline]
fn fix_unix_socket_length(addr: &mut SockAddr) {
    use windows_sys::Win32::Networking::WinSock::SOCKADDR_UN;

    // SAFETY: cannot construct non-unix socket address in safe way.
    let unix_addr: &SOCKADDR_UN = unsafe { &*addr.as_ptr().cast() };
    let addr_len = match std::ffi::CStr::from_bytes_until_nul(&unix_addr.sun_path) {
        Ok(str) => str.to_bytes_with_nul().len() + 2,
        Err(_) => std::mem::size_of::<SOCKADDR_UN>(),
    };
    unsafe {
        addr.set_length(addr_len as _);
    }
}