compio_net/
tcp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
use std::{future::Future, io, net::SocketAddr};

use compio_buf::{BufResult, IoBuf, IoBufMut, IoVectoredBuf, IoVectoredBufMut};
use compio_driver::impl_raw_fd;
use compio_io::{AsyncRead, AsyncWrite};
use socket2::{Protocol, SockAddr, Socket as Socket2, Type};

use crate::{
    OwnedReadHalf, OwnedWriteHalf, PollFd, ReadHalf, Socket, ToSocketAddrsAsync, WriteHalf,
};

/// A TCP socket server, listening for connections.
///
/// You can accept a new connection by using the
/// [`accept`](`TcpListener::accept`) method.
///
/// # Examples
///
/// ```
/// use std::net::SocketAddr;
///
/// use compio_io::{AsyncReadExt, AsyncWriteExt};
/// use compio_net::{TcpListener, TcpStream};
/// use socket2::SockAddr;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async move {
/// let listener = TcpListener::bind("127.0.0.1:0").await.unwrap();
///
/// let addr = listener.local_addr().unwrap();
///
/// let tx_fut = TcpStream::connect(&addr);
///
/// let rx_fut = listener.accept();
///
/// let (mut tx, (mut rx, _)) = futures_util::try_join!(tx_fut, rx_fut).unwrap();
///
/// tx.write_all("test").await.0.unwrap();
///
/// let (_, buf) = rx.read_exact(Vec::with_capacity(4)).await.unwrap();
///
/// assert_eq!(buf, b"test");
/// # });
/// ```
#[derive(Debug, Clone)]
pub struct TcpListener {
    inner: Socket,
}

impl TcpListener {
    /// Creates a new `TcpListener`, which will be bound to the specified
    /// address.
    ///
    /// The returned listener is ready for accepting connections.
    ///
    /// Binding with a port number of 0 will request that the OS assigns a port
    /// to this listener.
    pub async fn bind(addr: impl ToSocketAddrsAsync) -> io::Result<Self> {
        super::each_addr(addr, |addr| async move {
            let socket =
                Socket::bind(&SockAddr::from(addr), Type::STREAM, Some(Protocol::TCP)).await?;
            socket.listen(128)?;
            Ok(Self { inner: socket })
        })
        .await
    }

    /// Close the socket. If the returned future is dropped before polling, the
    /// socket won't be closed.
    pub fn close(self) -> impl Future<Output = io::Result<()>> {
        self.inner.close()
    }

    /// Accepts a new incoming connection from this listener.
    ///
    /// This function will yield once a new TCP connection is established. When
    /// established, the corresponding [`TcpStream`] and the remote peer's
    /// address will be returned.
    pub async fn accept(&self) -> io::Result<(TcpStream, SocketAddr)> {
        let (socket, addr) = self.inner.accept().await?;
        let stream = TcpStream { inner: socket };
        Ok((stream, addr.as_socket().expect("should be SocketAddr")))
    }

    /// Returns the local address that this listener is bound to.
    ///
    /// This can be useful, for example, when binding to port 0 to
    /// figure out which port was actually bound.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4};
    ///
    /// use compio_net::TcpListener;
    /// use socket2::SockAddr;
    ///
    /// # compio_runtime::Runtime::new().unwrap().block_on(async {
    /// let listener = TcpListener::bind("127.0.0.1:8080").await.unwrap();
    ///
    /// let addr = listener.local_addr().expect("Couldn't get local address");
    /// assert_eq!(
    ///     addr,
    ///     SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 8080))
    /// );
    /// # });
    /// ```
    pub fn local_addr(&self) -> io::Result<SocketAddr> {
        self.inner
            .local_addr()
            .map(|addr| addr.as_socket().expect("should be SocketAddr"))
    }
}

impl_raw_fd!(TcpListener, socket2::Socket, inner, socket);

/// A TCP stream between a local and a remote socket.
///
/// A TCP stream can either be created by connecting to an endpoint, via the
/// `connect` method, or by accepting a connection from a listener.
///
/// # Examples
///
/// ```no_run
/// use std::net::SocketAddr;
///
/// use compio_io::AsyncWrite;
/// use compio_net::TcpStream;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// // Connect to a peer
/// let mut stream = TcpStream::connect("127.0.0.1:8080").await.unwrap();
///
/// // Write some data.
/// stream.write("hello world!").await.unwrap();
/// # })
/// ```
#[derive(Debug, Clone)]
pub struct TcpStream {
    inner: Socket,
}

impl TcpStream {
    /// Opens a TCP connection to a remote host.
    pub async fn connect(addr: impl ToSocketAddrsAsync) -> io::Result<Self> {
        use std::net::{Ipv4Addr, Ipv6Addr, SocketAddrV4, SocketAddrV6};

        super::each_addr(addr, |addr| async move {
            let addr2 = SockAddr::from(addr);
            let socket = if cfg!(windows) {
                let bind_addr = if addr.is_ipv4() {
                    SockAddr::from(SocketAddrV4::new(Ipv4Addr::UNSPECIFIED, 0))
                } else if addr.is_ipv6() {
                    SockAddr::from(SocketAddrV6::new(Ipv6Addr::UNSPECIFIED, 0, 0, 0))
                } else {
                    return Err(io::Error::new(
                        io::ErrorKind::AddrNotAvailable,
                        "Unsupported address domain.",
                    ));
                };
                Socket::bind(&bind_addr, Type::STREAM, Some(Protocol::TCP)).await?
            } else {
                Socket::new(addr2.domain(), Type::STREAM, Some(Protocol::TCP)).await?
            };
            socket.connect_async(&addr2).await?;
            Ok(Self { inner: socket })
        })
        .await
    }

    /// Creates new TcpStream from a std::net::TcpStream.
    pub fn from_std(stream: std::net::TcpStream) -> io::Result<Self> {
        Ok(Self {
            inner: Socket::from_socket2(Socket2::from(stream))?,
        })
    }

    /// Close the socket. If the returned future is dropped before polling, the
    /// socket won't be closed.
    pub fn close(self) -> impl Future<Output = io::Result<()>> {
        self.inner.close()
    }

    /// Returns the socket address of the remote peer of this TCP connection.
    pub fn peer_addr(&self) -> io::Result<SocketAddr> {
        self.inner
            .peer_addr()
            .map(|addr| addr.as_socket().expect("should be SocketAddr"))
    }

    /// Returns the socket address of the local half of this TCP connection.
    pub fn local_addr(&self) -> io::Result<SocketAddr> {
        self.inner
            .local_addr()
            .map(|addr| addr.as_socket().expect("should be SocketAddr"))
    }

    /// Splits a [`TcpStream`] into a read half and a write half, which can be
    /// used to read and write the stream concurrently.
    ///
    /// This method is more efficient than
    /// [`into_split`](TcpStream::into_split), but the halves cannot
    /// be moved into independently spawned tasks.
    pub fn split(&self) -> (ReadHalf<Self>, WriteHalf<Self>) {
        crate::split(self)
    }

    /// Splits a [`TcpStream`] into a read half and a write half, which can be
    /// used to read and write the stream concurrently.
    ///
    /// Unlike [`split`](TcpStream::split), the owned halves can be moved to
    /// separate tasks, however this comes at the cost of a heap allocation.
    pub fn into_split(self) -> (OwnedReadHalf<Self>, OwnedWriteHalf<Self>) {
        crate::into_split(self)
    }

    /// Create [`PollFd`] from inner socket.
    pub fn to_poll_fd(&self) -> io::Result<PollFd<Socket2>> {
        self.inner.to_poll_fd()
    }

    /// Create [`PollFd`] from inner socket.
    pub fn into_poll_fd(self) -> io::Result<PollFd<Socket2>> {
        self.inner.into_poll_fd()
    }
}

impl AsyncRead for TcpStream {
    #[inline]
    async fn read<B: IoBufMut>(&mut self, buf: B) -> BufResult<usize, B> {
        (&*self).read(buf).await
    }

    #[inline]
    async fn read_vectored<V: IoVectoredBufMut>(&mut self, buf: V) -> BufResult<usize, V> {
        (&*self).read_vectored(buf).await
    }
}

impl AsyncRead for &TcpStream {
    #[inline]
    async fn read<B: IoBufMut>(&mut self, buf: B) -> BufResult<usize, B> {
        self.inner.recv(buf).await
    }

    #[inline]
    async fn read_vectored<V: IoVectoredBufMut>(&mut self, buf: V) -> BufResult<usize, V> {
        self.inner.recv_vectored(buf).await
    }
}

impl AsyncWrite for TcpStream {
    #[inline]
    async fn write<T: IoBuf>(&mut self, buf: T) -> BufResult<usize, T> {
        (&*self).write(buf).await
    }

    #[inline]
    async fn write_vectored<T: IoVectoredBuf>(&mut self, buf: T) -> BufResult<usize, T> {
        (&*self).write_vectored(buf).await
    }

    #[inline]
    async fn flush(&mut self) -> io::Result<()> {
        (&*self).flush().await
    }

    #[inline]
    async fn shutdown(&mut self) -> io::Result<()> {
        (&*self).shutdown().await
    }
}

impl AsyncWrite for &TcpStream {
    #[inline]
    async fn write<T: IoBuf>(&mut self, buf: T) -> BufResult<usize, T> {
        self.inner.send(buf).await
    }

    #[inline]
    async fn write_vectored<T: IoVectoredBuf>(&mut self, buf: T) -> BufResult<usize, T> {
        self.inner.send_vectored(buf).await
    }

    #[inline]
    async fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }

    #[inline]
    async fn shutdown(&mut self) -> io::Result<()> {
        self.inner.shutdown().await
    }
}

impl_raw_fd!(TcpStream, socket2::Socket, inner, socket);