compio_net/tcp.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
use std::{future::Future, io, net::SocketAddr};
use compio_buf::{BufResult, IoBuf, IoBufMut, IoVectoredBuf, IoVectoredBufMut};
use compio_driver::impl_raw_fd;
use compio_io::{AsyncRead, AsyncWrite};
use socket2::{Protocol, SockAddr, Socket as Socket2, Type};
use crate::{
OwnedReadHalf, OwnedWriteHalf, PollFd, ReadHalf, Socket, ToSocketAddrsAsync, WriteHalf,
};
/// A TCP socket server, listening for connections.
///
/// You can accept a new connection by using the
/// [`accept`](`TcpListener::accept`) method.
///
/// # Examples
///
/// ```
/// use std::net::SocketAddr;
///
/// use compio_io::{AsyncReadExt, AsyncWriteExt};
/// use compio_net::{TcpListener, TcpStream};
/// use socket2::SockAddr;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async move {
/// let listener = TcpListener::bind("127.0.0.1:0").await.unwrap();
///
/// let addr = listener.local_addr().unwrap();
///
/// let tx_fut = TcpStream::connect(&addr);
///
/// let rx_fut = listener.accept();
///
/// let (mut tx, (mut rx, _)) = futures_util::try_join!(tx_fut, rx_fut).unwrap();
///
/// tx.write_all("test").await.0.unwrap();
///
/// let (_, buf) = rx.read_exact(Vec::with_capacity(4)).await.unwrap();
///
/// assert_eq!(buf, b"test");
/// # });
/// ```
#[derive(Debug, Clone)]
pub struct TcpListener {
inner: Socket,
}
impl TcpListener {
/// Creates a new `TcpListener`, which will be bound to the specified
/// address.
///
/// The returned listener is ready for accepting connections.
///
/// Binding with a port number of 0 will request that the OS assigns a port
/// to this listener.
pub async fn bind(addr: impl ToSocketAddrsAsync) -> io::Result<Self> {
super::each_addr(addr, |addr| async move {
let socket =
Socket::bind(&SockAddr::from(addr), Type::STREAM, Some(Protocol::TCP)).await?;
socket.listen(128)?;
Ok(Self { inner: socket })
})
.await
}
/// Close the socket. If the returned future is dropped before polling, the
/// socket won't be closed.
pub fn close(self) -> impl Future<Output = io::Result<()>> {
self.inner.close()
}
/// Accepts a new incoming connection from this listener.
///
/// This function will yield once a new TCP connection is established. When
/// established, the corresponding [`TcpStream`] and the remote peer's
/// address will be returned.
pub async fn accept(&self) -> io::Result<(TcpStream, SocketAddr)> {
let (socket, addr) = self.inner.accept().await?;
let stream = TcpStream { inner: socket };
Ok((stream, addr.as_socket().expect("should be SocketAddr")))
}
/// Returns the local address that this listener is bound to.
///
/// This can be useful, for example, when binding to port 0 to
/// figure out which port was actually bound.
///
/// # Examples
///
/// ```
/// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4};
///
/// use compio_net::TcpListener;
/// use socket2::SockAddr;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// let listener = TcpListener::bind("127.0.0.1:8080").await.unwrap();
///
/// let addr = listener.local_addr().expect("Couldn't get local address");
/// assert_eq!(
/// addr,
/// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 8080))
/// );
/// # });
/// ```
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.inner
.local_addr()
.map(|addr| addr.as_socket().expect("should be SocketAddr"))
}
}
impl_raw_fd!(TcpListener, socket2::Socket, inner, socket);
/// A TCP stream between a local and a remote socket.
///
/// A TCP stream can either be created by connecting to an endpoint, via the
/// `connect` method, or by accepting a connection from a listener.
///
/// # Examples
///
/// ```no_run
/// use std::net::SocketAddr;
///
/// use compio_io::AsyncWrite;
/// use compio_net::TcpStream;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// // Connect to a peer
/// let mut stream = TcpStream::connect("127.0.0.1:8080").await.unwrap();
///
/// // Write some data.
/// stream.write("hello world!").await.unwrap();
/// # })
/// ```
#[derive(Debug, Clone)]
pub struct TcpStream {
inner: Socket,
}
impl TcpStream {
/// Opens a TCP connection to a remote host.
pub async fn connect(addr: impl ToSocketAddrsAsync) -> io::Result<Self> {
use std::net::{Ipv4Addr, Ipv6Addr, SocketAddrV4, SocketAddrV6};
super::each_addr(addr, |addr| async move {
let addr2 = SockAddr::from(addr);
let socket = if cfg!(windows) {
let bind_addr = if addr.is_ipv4() {
SockAddr::from(SocketAddrV4::new(Ipv4Addr::UNSPECIFIED, 0))
} else if addr.is_ipv6() {
SockAddr::from(SocketAddrV6::new(Ipv6Addr::UNSPECIFIED, 0, 0, 0))
} else {
return Err(io::Error::new(
io::ErrorKind::AddrNotAvailable,
"Unsupported address domain.",
));
};
Socket::bind(&bind_addr, Type::STREAM, Some(Protocol::TCP)).await?
} else {
Socket::new(addr2.domain(), Type::STREAM, Some(Protocol::TCP)).await?
};
socket.connect_async(&addr2).await?;
Ok(Self { inner: socket })
})
.await
}
/// Creates new TcpStream from a std::net::TcpStream.
pub fn from_std(stream: std::net::TcpStream) -> io::Result<Self> {
Ok(Self {
inner: Socket::from_socket2(Socket2::from(stream))?,
})
}
/// Close the socket. If the returned future is dropped before polling, the
/// socket won't be closed.
pub fn close(self) -> impl Future<Output = io::Result<()>> {
self.inner.close()
}
/// Returns the socket address of the remote peer of this TCP connection.
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.inner
.peer_addr()
.map(|addr| addr.as_socket().expect("should be SocketAddr"))
}
/// Returns the socket address of the local half of this TCP connection.
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.inner
.local_addr()
.map(|addr| addr.as_socket().expect("should be SocketAddr"))
}
/// Splits a [`TcpStream`] into a read half and a write half, which can be
/// used to read and write the stream concurrently.
///
/// This method is more efficient than
/// [`into_split`](TcpStream::into_split), but the halves cannot
/// be moved into independently spawned tasks.
pub fn split(&self) -> (ReadHalf<Self>, WriteHalf<Self>) {
crate::split(self)
}
/// Splits a [`TcpStream`] into a read half and a write half, which can be
/// used to read and write the stream concurrently.
///
/// Unlike [`split`](TcpStream::split), the owned halves can be moved to
/// separate tasks, however this comes at the cost of a heap allocation.
pub fn into_split(self) -> (OwnedReadHalf<Self>, OwnedWriteHalf<Self>) {
crate::into_split(self)
}
/// Create [`PollFd`] from inner socket.
pub fn to_poll_fd(&self) -> io::Result<PollFd<Socket2>> {
self.inner.to_poll_fd()
}
/// Create [`PollFd`] from inner socket.
pub fn into_poll_fd(self) -> io::Result<PollFd<Socket2>> {
self.inner.into_poll_fd()
}
}
impl AsyncRead for TcpStream {
#[inline]
async fn read<B: IoBufMut>(&mut self, buf: B) -> BufResult<usize, B> {
(&*self).read(buf).await
}
#[inline]
async fn read_vectored<V: IoVectoredBufMut>(&mut self, buf: V) -> BufResult<usize, V> {
(&*self).read_vectored(buf).await
}
}
impl AsyncRead for &TcpStream {
#[inline]
async fn read<B: IoBufMut>(&mut self, buf: B) -> BufResult<usize, B> {
self.inner.recv(buf).await
}
#[inline]
async fn read_vectored<V: IoVectoredBufMut>(&mut self, buf: V) -> BufResult<usize, V> {
self.inner.recv_vectored(buf).await
}
}
impl AsyncWrite for TcpStream {
#[inline]
async fn write<T: IoBuf>(&mut self, buf: T) -> BufResult<usize, T> {
(&*self).write(buf).await
}
#[inline]
async fn write_vectored<T: IoVectoredBuf>(&mut self, buf: T) -> BufResult<usize, T> {
(&*self).write_vectored(buf).await
}
#[inline]
async fn flush(&mut self) -> io::Result<()> {
(&*self).flush().await
}
#[inline]
async fn shutdown(&mut self) -> io::Result<()> {
(&*self).shutdown().await
}
}
impl AsyncWrite for &TcpStream {
#[inline]
async fn write<T: IoBuf>(&mut self, buf: T) -> BufResult<usize, T> {
self.inner.send(buf).await
}
#[inline]
async fn write_vectored<T: IoVectoredBuf>(&mut self, buf: T) -> BufResult<usize, T> {
self.inner.send_vectored(buf).await
}
#[inline]
async fn flush(&mut self) -> io::Result<()> {
Ok(())
}
#[inline]
async fn shutdown(&mut self) -> io::Result<()> {
self.inner.shutdown().await
}
}
impl_raw_fd!(TcpStream, socket2::Socket, inner, socket);