compio_process/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
//! Process library for compio. It is an extension to [`std::process`].
#![cfg_attr(docsrs, feature(doc_cfg, doc_auto_cfg))]
#![cfg_attr(
all(feature = "linux_pidfd", target_os = "linux"),
feature(linux_pidfd)
)]
#![warn(missing_docs)]
cfg_if::cfg_if! {
if #[cfg(windows)] {
#[path = "windows.rs"]
mod sys;
} else if #[cfg(target_os = "linux")] {
#[path = "linux.rs"]
mod sys;
} else {
#[path = "unix.rs"]
mod sys;
}
}
#[cfg(unix)]
use std::os::unix::process::CommandExt;
#[cfg(windows)]
use std::os::windows::process::CommandExt;
use std::{ffi::OsStr, io, path::Path, process};
use compio_buf::{BufResult, IntoInner};
use compio_io::AsyncReadExt;
use compio_runtime::Attacher;
use futures_util::future::Either;
/// A process builder, providing fine-grained control
/// over how a new process should be spawned.
///
/// A default configuration can be
/// generated using `Command::new(program)`, where `program` gives a path to the
/// program to be executed. Additional builder methods allow the configuration
/// to be changed (for example, by adding arguments) prior to spawning:
///
/// ```
/// use compio_process::Command;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async move {
/// let output = if cfg!(windows) {
/// Command::new("cmd")
/// .args(["/C", "echo hello"])
/// .output()
/// .await
/// .expect("failed to execute process")
/// } else {
/// Command::new("sh")
/// .args(["-c", "echo hello"])
/// .output()
/// .await
/// .expect("failed to execute process")
/// };
///
/// let hello = output.stdout;
/// # })
/// ```
///
/// `Command` can be reused to spawn multiple processes. The builder methods
/// change the command without needing to immediately spawn the process.
///
/// ```no_run
/// use compio_process::Command;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async move {
/// let mut echo_hello = Command::new("sh");
/// echo_hello.arg("-c").arg("echo hello");
/// let hello_1 = echo_hello
/// .output()
/// .await
/// .expect("failed to execute process");
/// let hello_2 = echo_hello
/// .output()
/// .await
/// .expect("failed to execute process");
/// # })
/// ```
///
/// Similarly, you can call builder methods after spawning a process and then
/// spawn a new process with the modified settings.
///
/// ```no_run
/// use compio_process::Command;
///
/// # compio_runtime::Runtime::new().unwrap().block_on(async move {
/// let mut list_dir = Command::new("ls");
///
/// // Execute `ls` in the current directory of the program.
/// list_dir.status().await.expect("process failed to execute");
///
/// println!();
///
/// // Change `ls` to execute in the root directory.
/// list_dir.current_dir("/");
///
/// // And then execute `ls` again but in the root directory.
/// list_dir.status().await.expect("process failed to execute");
/// # })
/// ```
///
/// See [`std::process::Command`] for detailed documents.
#[derive(Debug)]
pub struct Command(process::Command);
impl Command {
/// Create [`Command`].
pub fn new(program: impl AsRef<OsStr>) -> Self {
Self(process::Command::new(program))
}
/// Adds an argument to pass to the program.
pub fn arg(&mut self, arg: impl AsRef<OsStr>) -> &mut Self {
self.0.arg(arg);
self
}
/// Adds multiple arguments to pass to the program.
pub fn args<I, S>(&mut self, args: I) -> &mut Self
where
I: IntoIterator<Item = S>,
S: AsRef<OsStr>,
{
self.0.args(args);
self
}
/// Inserts or updates an explicit environment variable mapping.
pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Self
where
K: AsRef<OsStr>,
V: AsRef<OsStr>,
{
self.0.env(key, val);
self
}
/// Inserts or updates multiple explicit environment variable mappings.
pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Self
where
I: IntoIterator<Item = (K, V)>,
K: AsRef<OsStr>,
V: AsRef<OsStr>,
{
self.0.envs(vars);
self
}
/// Removes an explicitly set environment variable and prevents inheriting
/// it from a parent process.
pub fn env_remove(&mut self, key: impl AsRef<OsStr>) -> &mut Self {
self.0.env_remove(key);
self
}
/// Clears all explicitly set environment variables and prevents inheriting
/// any parent process environment variables.
pub fn env_clear(&mut self) -> &mut Self {
self.0.env_clear();
self
}
/// Sets the working directory for the child process.
pub fn current_dir(&mut self, dir: impl AsRef<Path>) -> &mut Self {
self.0.current_dir(dir);
self
}
/// Configuration for the child process’s standard input (stdin) handle.
pub fn stdin<S: TryInto<process::Stdio>>(&mut self, cfg: S) -> Result<&mut Self, S::Error> {
self.0.stdin(cfg.try_into()?);
Ok(self)
}
/// Configuration for the child process’s standard output (stdout) handle.
pub fn stdout<S: TryInto<process::Stdio>>(&mut self, cfg: S) -> Result<&mut Self, S::Error> {
self.0.stdout(cfg.try_into()?);
Ok(self)
}
/// Configuration for the child process’s standard error (stderr) handle.
pub fn stderr<S: TryInto<process::Stdio>>(&mut self, cfg: S) -> Result<&mut Self, S::Error> {
self.0.stderr(cfg.try_into()?);
Ok(self)
}
/// Returns the path to the program.
pub fn get_program(&self) -> &OsStr {
self.0.get_program()
}
/// Returns an iterator of the arguments that will be passed to the program.
pub fn get_args(&self) -> process::CommandArgs {
self.0.get_args()
}
/// Returns an iterator of the environment variables explicitly set for the
/// child process.
pub fn get_envs(&self) -> process::CommandEnvs {
self.0.get_envs()
}
/// Returns the working directory for the child process.
pub fn get_current_dir(&self) -> Option<&Path> {
self.0.get_current_dir()
}
/// Executes the command as a child process, returning a handle to it.
pub fn spawn(&mut self) -> io::Result<Child> {
#[cfg(all(target_os = "linux", feature = "linux_pidfd"))]
{
use std::os::linux::process::CommandExt;
self.0.create_pidfd(true);
}
let mut child = self.0.spawn()?;
let stdin = if let Some(stdin) = child.stdin.take() {
Some(ChildStdin::new(stdin)?)
} else {
None
};
let stdout = if let Some(stdout) = child.stdout.take() {
Some(ChildStdout::new(stdout)?)
} else {
None
};
let stderr = if let Some(stderr) = child.stderr.take() {
Some(ChildStderr::new(stderr)?)
} else {
None
};
Ok(Child {
child,
stdin,
stdout,
stderr,
})
}
/// Executes a command as a child process, waiting for it to finish and
/// collecting its status. The output of child stdout and child stderr will
/// be ignored.
pub async fn status(&mut self) -> io::Result<process::ExitStatus> {
let child = self.spawn()?;
child.wait().await
}
/// Executes the command as a child process, waiting for it to finish and
/// collecting all of its output.
pub async fn output(&mut self) -> io::Result<process::Output> {
let child = self.spawn()?;
child.wait_with_output().await
}
}
#[cfg(windows)]
impl Command {
/// Sets the [process creation flags][1] to be passed to `CreateProcess`.
///
/// These will always be ORed with `CREATE_UNICODE_ENVIRONMENT`.
///
/// [1]: https://docs.microsoft.com/en-us/windows/win32/procthread/process-creation-flags
pub fn creation_flags(&mut self, flags: u32) -> &mut Self {
self.0.creation_flags(flags);
self
}
/// Append literal text to the command line without any quoting or escaping.
pub fn raw_arg(&mut self, text_to_append_as_is: impl AsRef<OsStr>) -> &mut Self {
self.0.raw_arg(text_to_append_as_is);
self
}
}
#[cfg(unix)]
impl Command {
/// Sets the child process’s user ID. This translates to a `setuid`` call in
/// the child process. Failure in the `setuid` call will cause the spawn to
/// fail.
pub fn uid(&mut self, id: u32) -> &mut Self {
self.0.uid(id);
self
}
/// Similar to `uid`, but sets the group ID of the child process. This has
/// the same semantics as the `uid` field.
pub fn gid(&mut self, id: u32) -> &mut Self {
self.0.gid(id);
self
}
/// Schedules a closure to be run just before the `exec` function is
/// invoked.
///
/// # Safety
///
/// See [`CommandExt::pre_exec`].
pub unsafe fn pre_exec(
&mut self,
f: impl FnMut() -> io::Result<()> + Send + Sync + 'static,
) -> &mut Self {
self.0.pre_exec(f);
self
}
/// `exec` the command without `fork`.
pub fn exec(&mut self) -> io::Error {
self.0.exec()
}
/// Set the first process argument, `argv[0]`, to something other than the
/// default executable path.
pub fn arg0(&mut self, arg: impl AsRef<OsStr>) -> &mut Self {
self.0.arg0(arg);
self
}
/// Sets the process group ID (PGID) of the child process.
pub fn process_group(&mut self, pgroup: i32) -> &mut Self {
self.0.process_group(pgroup);
self
}
}
/// Representation of a running or exited child process.
///
/// This structure is used to represent and manage child processes. A child
/// process is created via the [`Command`] struct, which configures the
/// spawning process and can itself be constructed using a builder-style
/// interface.
///
/// There is no implementation of [`Drop`] for child processes,
/// so if you do not ensure the `Child` has exited then it will continue to
/// run, even after the `Child` handle to the child process has gone out of
/// scope.
///
/// Calling [`Child::wait`] (or other functions that wrap around it) will make
/// the parent process wait until the child has actually exited before
/// continuing.
///
/// See [`std::process::Child`] for detailed documents.
pub struct Child {
child: process::Child,
/// The handle for writing to the child’s standard input (stdin).
pub stdin: Option<ChildStdin>,
/// The handle for reading from the child’s standard output (stdout).
pub stdout: Option<ChildStdout>,
/// The handle for reading from the child’s standard error (stderr).
pub stderr: Option<ChildStderr>,
}
impl Child {
/// Forces the child process to exit. If the child has already exited,
/// `Ok(())`` is returned.
pub fn kill(&mut self) -> io::Result<()> {
self.child.kill()
}
/// Returns the OS-assigned process identifier associated with this child.
pub fn id(&self) -> u32 {
self.child.id()
}
/// Waits for the child to exit completely, returning the status that it
/// exited with. This function will consume the child. To get the output,
/// either take `stdout` and `stderr` out before calling it, or call
/// [`Child::wait_with_output`].
pub async fn wait(self) -> io::Result<process::ExitStatus> {
sys::child_wait(self.child).await
}
/// Simultaneously waits for the child to exit and collect all remaining
/// output on the stdout/stderr handles, returning an Output instance.
pub async fn wait_with_output(mut self) -> io::Result<process::Output> {
let status = sys::child_wait(self.child);
let stdout = if let Some(stdout) = &mut self.stdout {
Either::Left(stdout.read_to_end(vec![]))
} else {
Either::Right(std::future::ready(BufResult(Ok(0), vec![])))
};
let stderr = if let Some(stderr) = &mut self.stderr {
Either::Left(stderr.read_to_end(vec![]))
} else {
Either::Right(std::future::ready(BufResult(Ok(0), vec![])))
};
let (status, BufResult(out_res, stdout), BufResult(err_res, stderr)) =
futures_util::future::join3(status, stdout, stderr).await;
let status = status?;
out_res?;
err_res?;
Ok(process::Output {
status,
stdout,
stderr,
})
}
}
/// A handle to a child process's standard output (stdout). See
/// [`std::process::ChildStdout`].
pub struct ChildStdout(Attacher<process::ChildStdout>);
impl ChildStdout {
fn new(stdout: process::ChildStdout) -> io::Result<Self> {
Attacher::new(stdout).map(Self)
}
}
impl TryFrom<ChildStdout> for process::Stdio {
type Error = ChildStdout;
fn try_from(value: ChildStdout) -> Result<Self, ChildStdout> {
value
.0
.into_inner()
.try_unwrap()
.map(Self::from)
.map_err(|fd| ChildStdout(unsafe { Attacher::from_shared_fd_unchecked(fd) }))
}
}
/// A handle to a child process's stderr. See [`std::process::ChildStderr`].
pub struct ChildStderr(Attacher<process::ChildStderr>);
impl ChildStderr {
fn new(stderr: process::ChildStderr) -> io::Result<Self> {
Attacher::new(stderr).map(Self)
}
}
impl TryFrom<ChildStderr> for process::Stdio {
type Error = ChildStderr;
fn try_from(value: ChildStderr) -> Result<Self, ChildStderr> {
value
.0
.into_inner()
.try_unwrap()
.map(Self::from)
.map_err(|fd| ChildStderr(unsafe { Attacher::from_shared_fd_unchecked(fd) }))
}
}
/// A handle to a child process's standard input (stdin). See
/// [`std::process::ChildStdin`].
pub struct ChildStdin(Attacher<process::ChildStdin>);
impl ChildStdin {
fn new(stdin: process::ChildStdin) -> io::Result<Self> {
Attacher::new(stdin).map(Self)
}
}
impl TryFrom<ChildStdin> for process::Stdio {
type Error = ChildStdin;
fn try_from(value: ChildStdin) -> Result<Self, ChildStdin> {
value
.0
.into_inner()
.try_unwrap()
.map(Self::from)
.map_err(|fd| ChildStdin(unsafe { Attacher::from_shared_fd_unchecked(fd) }))
}
}