compio_runtime/runtime/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
use std::{
    any::Any,
    cell::RefCell,
    collections::VecDeque,
    future::{Future, poll_fn, ready},
    io,
    marker::PhantomData,
    panic::AssertUnwindSafe,
    rc::Rc,
    sync::Arc,
    task::{Context, Poll},
    time::Duration,
};

use async_task::{Runnable, Task};
use compio_buf::IntoInner;
use compio_driver::{
    AsRawFd, Key, NotifyHandle, OpCode, Proactor, ProactorBuilder, PushEntry, RawFd, op::Asyncify,
};
use compio_log::{debug, instrument};
use crossbeam_queue::SegQueue;
use futures_util::{FutureExt, future::Either};

pub(crate) mod op;
#[cfg(feature = "time")]
pub(crate) mod time;

mod send_wrapper;
use send_wrapper::SendWrapper;

#[cfg(feature = "time")]
use crate::runtime::time::{TimerFuture, TimerRuntime};
use crate::{BufResult, runtime::op::OpFuture};

scoped_tls::scoped_thread_local!(static CURRENT_RUNTIME: Runtime);

/// Type alias for `Task<Result<T, Box<dyn Any + Send>>>`, which resolves to an
/// `Err` when the spawned future panicked.
pub type JoinHandle<T> = Task<Result<T, Box<dyn Any + Send>>>;

struct RunnableQueue {
    local_runnables: SendWrapper<RefCell<VecDeque<Runnable>>>,
    sync_runnables: SegQueue<Runnable>,
}

impl RunnableQueue {
    pub fn new() -> Self {
        Self {
            local_runnables: SendWrapper::new(RefCell::new(VecDeque::new())),
            sync_runnables: SegQueue::new(),
        }
    }

    pub fn schedule(&self, runnable: Runnable, handle: &NotifyHandle) {
        if let Some(runnables) = self.local_runnables.get() {
            runnables.borrow_mut().push_back(runnable);
        } else {
            self.sync_runnables.push(runnable);
            handle.notify().ok();
        }
    }

    /// SAFETY: call in the main thread
    pub unsafe fn run(&self, event_interval: usize) -> bool {
        let local_runnables = self.local_runnables.get_unchecked();
        for _i in 0..event_interval {
            let next_task = local_runnables.borrow_mut().pop_front();
            let has_local_task = next_task.is_some();
            if let Some(task) = next_task {
                task.run();
            }
            // Cheaper than pop.
            let has_sync_task = !self.sync_runnables.is_empty();
            if has_sync_task {
                if let Some(task) = self.sync_runnables.pop() {
                    task.run();
                }
            } else if !has_local_task {
                break;
            }
        }
        !(local_runnables.borrow_mut().is_empty() && self.sync_runnables.is_empty())
    }
}

/// The async runtime of compio. It is a thread local runtime, and cannot be
/// sent to other threads.
pub struct Runtime {
    driver: RefCell<Proactor>,
    runnables: Arc<RunnableQueue>,
    #[cfg(feature = "time")]
    timer_runtime: RefCell<TimerRuntime>,
    event_interval: usize,
    // Other fields don't make it !Send, but actually `local_runnables` implies it should be !Send,
    // otherwise it won't be valid if the runtime is sent to other threads.
    _p: PhantomData<Rc<VecDeque<Runnable>>>,
}

impl Runtime {
    /// Create [`Runtime`] with default config.
    pub fn new() -> io::Result<Self> {
        Self::builder().build()
    }

    /// Create a builder for [`Runtime`].
    pub fn builder() -> RuntimeBuilder {
        RuntimeBuilder::new()
    }

    fn with_builder(builder: &RuntimeBuilder) -> io::Result<Self> {
        Ok(Self {
            driver: RefCell::new(builder.proactor_builder.build()?),
            runnables: Arc::new(RunnableQueue::new()),
            #[cfg(feature = "time")]
            timer_runtime: RefCell::new(TimerRuntime::new()),
            event_interval: builder.event_interval,
            _p: PhantomData,
        })
    }

    /// Try to perform a function on the current runtime, and if no runtime is
    /// running, return the function back.
    pub fn try_with_current<T, F: FnOnce(&Self) -> T>(f: F) -> Result<T, F> {
        if CURRENT_RUNTIME.is_set() {
            Ok(CURRENT_RUNTIME.with(f))
        } else {
            Err(f)
        }
    }

    /// Perform a function on the current runtime.
    ///
    /// ## Panics
    ///
    /// This method will panic if there are no running [`Runtime`].
    pub fn with_current<T, F: FnOnce(&Self) -> T>(f: F) -> T {
        #[cold]
        fn not_in_compio_runtime() -> ! {
            panic!("not in a compio runtime")
        }

        if CURRENT_RUNTIME.is_set() {
            CURRENT_RUNTIME.with(f)
        } else {
            not_in_compio_runtime()
        }
    }

    /// Set this runtime as current runtime, and perform a function in the
    /// current scope.
    pub fn enter<T, F: FnOnce() -> T>(&self, f: F) -> T {
        CURRENT_RUNTIME.set(self, f)
    }

    /// Spawns a new asynchronous task, returning a [`Task`] for it.
    ///
    /// # Safety
    ///
    /// The caller should ensure the captured lifetime long enough.
    pub unsafe fn spawn_unchecked<F: Future>(&self, future: F) -> Task<F::Output> {
        let runnables = self.runnables.clone();
        let handle = self
            .driver
            .borrow()
            .handle()
            .expect("cannot create notify handle of the proactor");
        let schedule = move |runnable| {
            runnables.schedule(runnable, &handle);
        };
        let (runnable, task) = async_task::spawn_unchecked(future, schedule);
        runnable.schedule();
        task
    }

    /// Low level API to control the runtime.
    ///
    /// Run the scheduled tasks.
    ///
    /// The return value indicates whether there are still tasks in the queue.
    pub fn run(&self) -> bool {
        // SAFETY: self is !Send + !Sync.
        unsafe { self.runnables.run(self.event_interval) }
    }

    /// Block on the future till it completes.
    pub fn block_on<F: Future>(&self, future: F) -> F::Output {
        CURRENT_RUNTIME.set(self, || {
            let mut result = None;
            unsafe { self.spawn_unchecked(async { result = Some(future.await) }) }.detach();
            loop {
                let remaining_tasks = self.run();
                if let Some(result) = result.take() {
                    return result;
                }
                if remaining_tasks {
                    self.poll_with(Some(Duration::ZERO));
                } else {
                    self.poll();
                }
            }
        })
    }

    /// Spawns a new asynchronous task, returning a [`Task`] for it.
    ///
    /// Spawning a task enables the task to execute concurrently to other tasks.
    /// There is no guarantee that a spawned task will execute to completion.
    pub fn spawn<F: Future + 'static>(&self, future: F) -> JoinHandle<F::Output> {
        unsafe { self.spawn_unchecked(AssertUnwindSafe(future).catch_unwind()) }
    }

    /// Spawns a blocking task in a new thread, and wait for it.
    ///
    /// The task will not be cancelled even if the future is dropped.
    pub fn spawn_blocking<T: Send + 'static>(
        &self,
        f: impl (FnOnce() -> T) + Send + Sync + 'static,
    ) -> JoinHandle<T> {
        let op = Asyncify::new(move || {
            let res = std::panic::catch_unwind(AssertUnwindSafe(f));
            BufResult(Ok(0), res)
        });
        let closure = async move {
            let mut op = op;
            loop {
                match self.submit(op).await {
                    BufResult(Ok(_), rop) => break rop.into_inner(),
                    BufResult(Err(_), rop) => op = rop,
                }
                // Possible error: thread pool is full, or failed to create notify handle.
                // Push the future to the back of the queue.
                let mut yielded = false;
                poll_fn(|cx| {
                    if yielded {
                        Poll::Ready(())
                    } else {
                        yielded = true;
                        cx.waker().wake_by_ref();
                        Poll::Pending
                    }
                })
                .await;
            }
        };
        // SAFETY: the closure catches the shared reference of self, which is in an Rc
        // so it won't be moved.
        unsafe { self.spawn_unchecked(closure) }
    }

    /// Attach a raw file descriptor/handle/socket to the runtime.
    ///
    /// You only need this when authoring your own high-level APIs. High-level
    /// resources in this crate are attached automatically.
    pub fn attach(&self, fd: RawFd) -> io::Result<()> {
        self.driver.borrow_mut().attach(fd)
    }

    fn submit_raw<T: OpCode + 'static>(&self, op: T) -> PushEntry<Key<T>, BufResult<usize, T>> {
        self.driver.borrow_mut().push(op)
    }

    /// Submit an operation to the runtime.
    ///
    /// You only need this when authoring your own [`OpCode`].
    pub fn submit<T: OpCode + 'static>(&self, op: T) -> impl Future<Output = BufResult<usize, T>> {
        self.submit_with_flags(op).map(|(res, _)| res)
    }

    /// Submit an operation to the runtime.
    ///
    /// The difference between [`Runtime::submit`] is this method will return
    /// the flags
    ///
    /// You only need this when authoring your own [`OpCode`].
    pub fn submit_with_flags<T: OpCode + 'static>(
        &self,
        op: T,
    ) -> impl Future<Output = (BufResult<usize, T>, u32)> {
        match self.submit_raw(op) {
            PushEntry::Pending(user_data) => Either::Left(OpFuture::new(user_data)),
            PushEntry::Ready(res) => {
                // submit_flags won't be ready immediately, if ready, it must be error without
                // flags
                Either::Right(ready((res, 0)))
            }
        }
    }

    #[cfg(feature = "time")]
    pub(crate) fn create_timer(&self, delay: std::time::Duration) -> impl Future<Output = ()> {
        let mut timer_runtime = self.timer_runtime.borrow_mut();
        if let Some(key) = timer_runtime.insert(delay) {
            Either::Left(TimerFuture::new(key))
        } else {
            Either::Right(std::future::ready(()))
        }
    }

    pub(crate) fn cancel_op<T: OpCode>(&self, op: Key<T>) {
        self.driver.borrow_mut().cancel(op);
    }

    #[cfg(feature = "time")]
    pub(crate) fn cancel_timer(&self, key: usize) {
        self.timer_runtime.borrow_mut().cancel(key);
    }

    pub(crate) fn poll_task<T: OpCode>(
        &self,
        cx: &mut Context,
        op: Key<T>,
    ) -> PushEntry<Key<T>, (BufResult<usize, T>, u32)> {
        instrument!(compio_log::Level::DEBUG, "poll_task", ?op);
        let mut driver = self.driver.borrow_mut();
        driver.pop(op).map_pending(|mut k| {
            driver.update_waker(&mut k, cx.waker().clone());
            k
        })
    }

    #[cfg(feature = "time")]
    pub(crate) fn poll_timer(&self, cx: &mut Context, key: usize) -> Poll<()> {
        instrument!(compio_log::Level::DEBUG, "poll_timer", ?cx, ?key);
        let mut timer_runtime = self.timer_runtime.borrow_mut();
        if !timer_runtime.is_completed(key) {
            debug!("pending");
            timer_runtime.update_waker(key, cx.waker().clone());
            Poll::Pending
        } else {
            debug!("ready");
            Poll::Ready(())
        }
    }

    /// Low level API to control the runtime.
    ///
    /// Get the timeout value to be passed to [`Proactor::poll`].
    pub fn current_timeout(&self) -> Option<Duration> {
        #[cfg(not(feature = "time"))]
        let timeout = None;
        #[cfg(feature = "time")]
        let timeout = self.timer_runtime.borrow().min_timeout();
        timeout
    }

    /// Low level API to control the runtime.
    ///
    /// Poll the inner proactor. It is equal to calling [`Runtime::poll_with`]
    /// with [`Runtime::current_timeout`].
    pub fn poll(&self) {
        instrument!(compio_log::Level::DEBUG, "poll");
        let timeout = self.current_timeout();
        debug!("timeout: {:?}", timeout);
        self.poll_with(timeout)
    }

    /// Low level API to control the runtime.
    ///
    /// Poll the inner proactor with a custom timeout.
    pub fn poll_with(&self, timeout: Option<Duration>) {
        instrument!(compio_log::Level::DEBUG, "poll_with");

        let mut driver = self.driver.borrow_mut();
        match driver.poll(timeout) {
            Ok(()) => {}
            Err(e) => match e.kind() {
                io::ErrorKind::TimedOut | io::ErrorKind::Interrupted => {
                    debug!("expected error: {e}");
                }
                _ => panic!("{e:?}"),
            },
        }
        #[cfg(feature = "time")]
        self.timer_runtime.borrow_mut().wake();
    }
}

impl Drop for Runtime {
    fn drop(&mut self) {
        self.enter(|| {
            while self.runnables.sync_runnables.pop().is_some() {}
            let local_runnables = unsafe { self.runnables.local_runnables.get_unchecked() };
            let mut local_runnables = local_runnables.borrow_mut();
            while local_runnables.pop_front().is_some() {}
        })
    }
}

impl AsRawFd for Runtime {
    fn as_raw_fd(&self) -> RawFd {
        self.driver.borrow().as_raw_fd()
    }
}

#[cfg(feature = "criterion")]
impl criterion::async_executor::AsyncExecutor for Runtime {
    fn block_on<T>(&self, future: impl Future<Output = T>) -> T {
        self.block_on(future)
    }
}

#[cfg(feature = "criterion")]
impl criterion::async_executor::AsyncExecutor for &Runtime {
    fn block_on<T>(&self, future: impl Future<Output = T>) -> T {
        (**self).block_on(future)
    }
}

/// Builder for [`Runtime`].
#[derive(Debug, Clone)]
pub struct RuntimeBuilder {
    proactor_builder: ProactorBuilder,
    event_interval: usize,
}

impl Default for RuntimeBuilder {
    fn default() -> Self {
        Self::new()
    }
}

impl RuntimeBuilder {
    /// Create the builder with default config.
    pub fn new() -> Self {
        Self {
            proactor_builder: ProactorBuilder::new(),
            event_interval: 61,
        }
    }

    /// Replace proactor builder.
    pub fn with_proactor(&mut self, builder: ProactorBuilder) -> &mut Self {
        self.proactor_builder = builder;
        self
    }

    /// Sets the number of scheduler ticks after which the scheduler will poll
    /// for external events (timers, I/O, and so on).
    ///
    /// A scheduler “tick” roughly corresponds to one poll invocation on a task.
    pub fn event_interval(&mut self, val: usize) -> &mut Self {
        self.event_interval = val;
        self
    }

    /// Build [`Runtime`].
    pub fn build(&self) -> io::Result<Runtime> {
        Runtime::with_builder(self)
    }
}

/// Spawns a new asynchronous task, returning a [`Task`] for it.
///
/// Spawning a task enables the task to execute concurrently to other tasks.
/// There is no guarantee that a spawned task will execute to completion.
///
/// ```
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// let task = compio_runtime::spawn(async {
///     println!("Hello from a spawned task!");
///     42
/// });
///
/// assert_eq!(
///     task.await.unwrap_or_else(|e| std::panic::resume_unwind(e)),
///     42
/// );
/// # })
/// ```
///
/// ## Panics
///
/// This method doesn't create runtime. It tries to obtain the current runtime
/// by [`Runtime::with_current`].
pub fn spawn<F: Future + 'static>(future: F) -> JoinHandle<F::Output> {
    Runtime::with_current(|r| r.spawn(future))
}

/// Spawns a blocking task in a new thread, and wait for it.
///
/// The task will not be cancelled even if the future is dropped.
///
/// ## Panics
///
/// This method doesn't create runtime. It tries to obtain the current runtime
/// by [`Runtime::with_current`].
pub fn spawn_blocking<T: Send + 'static>(
    f: impl (FnOnce() -> T) + Send + Sync + 'static,
) -> JoinHandle<T> {
    Runtime::with_current(|r| r.spawn_blocking(f))
}

/// Submit an operation to the current runtime, and return a future for it.
///
/// ## Panics
///
/// This method doesn't create runtime. It tries to obtain the current runtime
/// by [`Runtime::with_current`].
pub fn submit<T: OpCode + 'static>(op: T) -> impl Future<Output = BufResult<usize, T>> {
    Runtime::with_current(|r| r.submit(op))
}

/// Submit an operation to the current runtime, and return a future for it with
/// flags.
///
/// ## Panics
///
/// This method doesn't create runtime. It tries to obtain the current runtime
/// by [`Runtime::with_current`].
pub fn submit_with_flags<T: OpCode + 'static>(
    op: T,
) -> impl Future<Output = (BufResult<usize, T>, u32)> {
    Runtime::with_current(|r| r.submit_with_flags(op))
}