compio_runtime/runtime/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
use std::{
any::Any,
cell::RefCell,
collections::VecDeque,
future::{Future, poll_fn, ready},
io,
marker::PhantomData,
panic::AssertUnwindSafe,
rc::Rc,
sync::Arc,
task::{Context, Poll},
time::Duration,
};
use async_task::{Runnable, Task};
use compio_buf::IntoInner;
use compio_driver::{
AsRawFd, Key, NotifyHandle, OpCode, Proactor, ProactorBuilder, PushEntry, RawFd, op::Asyncify,
};
use compio_log::{debug, instrument};
use crossbeam_queue::SegQueue;
use futures_util::{FutureExt, future::Either};
pub(crate) mod op;
#[cfg(feature = "time")]
pub(crate) mod time;
mod send_wrapper;
use send_wrapper::SendWrapper;
#[cfg(feature = "time")]
use crate::runtime::time::{TimerFuture, TimerRuntime};
use crate::{BufResult, runtime::op::OpFuture};
scoped_tls::scoped_thread_local!(static CURRENT_RUNTIME: Runtime);
/// Type alias for `Task<Result<T, Box<dyn Any + Send>>>`, which resolves to an
/// `Err` when the spawned future panicked.
pub type JoinHandle<T> = Task<Result<T, Box<dyn Any + Send>>>;
struct RunnableQueue {
local_runnables: SendWrapper<RefCell<VecDeque<Runnable>>>,
sync_runnables: SegQueue<Runnable>,
}
impl RunnableQueue {
pub fn new() -> Self {
Self {
local_runnables: SendWrapper::new(RefCell::new(VecDeque::new())),
sync_runnables: SegQueue::new(),
}
}
pub fn schedule(&self, runnable: Runnable, handle: &NotifyHandle) {
if let Some(runnables) = self.local_runnables.get() {
runnables.borrow_mut().push_back(runnable);
} else {
self.sync_runnables.push(runnable);
handle.notify().ok();
}
}
/// SAFETY: call in the main thread
pub unsafe fn run(&self, event_interval: usize) -> bool {
let local_runnables = self.local_runnables.get_unchecked();
for _i in 0..event_interval {
let next_task = local_runnables.borrow_mut().pop_front();
let has_local_task = next_task.is_some();
if let Some(task) = next_task {
task.run();
}
// Cheaper than pop.
let has_sync_task = !self.sync_runnables.is_empty();
if has_sync_task {
if let Some(task) = self.sync_runnables.pop() {
task.run();
}
} else if !has_local_task {
break;
}
}
!(local_runnables.borrow_mut().is_empty() && self.sync_runnables.is_empty())
}
}
/// The async runtime of compio. It is a thread local runtime, and cannot be
/// sent to other threads.
pub struct Runtime {
driver: RefCell<Proactor>,
runnables: Arc<RunnableQueue>,
#[cfg(feature = "time")]
timer_runtime: RefCell<TimerRuntime>,
event_interval: usize,
// Other fields don't make it !Send, but actually `local_runnables` implies it should be !Send,
// otherwise it won't be valid if the runtime is sent to other threads.
_p: PhantomData<Rc<VecDeque<Runnable>>>,
}
impl Runtime {
/// Create [`Runtime`] with default config.
pub fn new() -> io::Result<Self> {
Self::builder().build()
}
/// Create a builder for [`Runtime`].
pub fn builder() -> RuntimeBuilder {
RuntimeBuilder::new()
}
fn with_builder(builder: &RuntimeBuilder) -> io::Result<Self> {
Ok(Self {
driver: RefCell::new(builder.proactor_builder.build()?),
runnables: Arc::new(RunnableQueue::new()),
#[cfg(feature = "time")]
timer_runtime: RefCell::new(TimerRuntime::new()),
event_interval: builder.event_interval,
_p: PhantomData,
})
}
/// Try to perform a function on the current runtime, and if no runtime is
/// running, return the function back.
pub fn try_with_current<T, F: FnOnce(&Self) -> T>(f: F) -> Result<T, F> {
if CURRENT_RUNTIME.is_set() {
Ok(CURRENT_RUNTIME.with(f))
} else {
Err(f)
}
}
/// Perform a function on the current runtime.
///
/// ## Panics
///
/// This method will panic if there are no running [`Runtime`].
pub fn with_current<T, F: FnOnce(&Self) -> T>(f: F) -> T {
#[cold]
fn not_in_compio_runtime() -> ! {
panic!("not in a compio runtime")
}
if CURRENT_RUNTIME.is_set() {
CURRENT_RUNTIME.with(f)
} else {
not_in_compio_runtime()
}
}
/// Set this runtime as current runtime, and perform a function in the
/// current scope.
pub fn enter<T, F: FnOnce() -> T>(&self, f: F) -> T {
CURRENT_RUNTIME.set(self, f)
}
/// Spawns a new asynchronous task, returning a [`Task`] for it.
///
/// # Safety
///
/// The caller should ensure the captured lifetime long enough.
pub unsafe fn spawn_unchecked<F: Future>(&self, future: F) -> Task<F::Output> {
let runnables = self.runnables.clone();
let handle = self
.driver
.borrow()
.handle()
.expect("cannot create notify handle of the proactor");
let schedule = move |runnable| {
runnables.schedule(runnable, &handle);
};
let (runnable, task) = async_task::spawn_unchecked(future, schedule);
runnable.schedule();
task
}
/// Low level API to control the runtime.
///
/// Run the scheduled tasks.
///
/// The return value indicates whether there are still tasks in the queue.
pub fn run(&self) -> bool {
// SAFETY: self is !Send + !Sync.
unsafe { self.runnables.run(self.event_interval) }
}
/// Block on the future till it completes.
pub fn block_on<F: Future>(&self, future: F) -> F::Output {
CURRENT_RUNTIME.set(self, || {
let mut result = None;
unsafe { self.spawn_unchecked(async { result = Some(future.await) }) }.detach();
loop {
let remaining_tasks = self.run();
if let Some(result) = result.take() {
return result;
}
if remaining_tasks {
self.poll_with(Some(Duration::ZERO));
} else {
self.poll();
}
}
})
}
/// Spawns a new asynchronous task, returning a [`Task`] for it.
///
/// Spawning a task enables the task to execute concurrently to other tasks.
/// There is no guarantee that a spawned task will execute to completion.
pub fn spawn<F: Future + 'static>(&self, future: F) -> JoinHandle<F::Output> {
unsafe { self.spawn_unchecked(AssertUnwindSafe(future).catch_unwind()) }
}
/// Spawns a blocking task in a new thread, and wait for it.
///
/// The task will not be cancelled even if the future is dropped.
pub fn spawn_blocking<T: Send + 'static>(
&self,
f: impl (FnOnce() -> T) + Send + Sync + 'static,
) -> JoinHandle<T> {
let op = Asyncify::new(move || {
let res = std::panic::catch_unwind(AssertUnwindSafe(f));
BufResult(Ok(0), res)
});
let closure = async move {
let mut op = op;
loop {
match self.submit(op).await {
BufResult(Ok(_), rop) => break rop.into_inner(),
BufResult(Err(_), rop) => op = rop,
}
// Possible error: thread pool is full, or failed to create notify handle.
// Push the future to the back of the queue.
let mut yielded = false;
poll_fn(|cx| {
if yielded {
Poll::Ready(())
} else {
yielded = true;
cx.waker().wake_by_ref();
Poll::Pending
}
})
.await;
}
};
// SAFETY: the closure catches the shared reference of self, which is in an Rc
// so it won't be moved.
unsafe { self.spawn_unchecked(closure) }
}
/// Attach a raw file descriptor/handle/socket to the runtime.
///
/// You only need this when authoring your own high-level APIs. High-level
/// resources in this crate are attached automatically.
pub fn attach(&self, fd: RawFd) -> io::Result<()> {
self.driver.borrow_mut().attach(fd)
}
fn submit_raw<T: OpCode + 'static>(&self, op: T) -> PushEntry<Key<T>, BufResult<usize, T>> {
self.driver.borrow_mut().push(op)
}
/// Submit an operation to the runtime.
///
/// You only need this when authoring your own [`OpCode`].
pub fn submit<T: OpCode + 'static>(&self, op: T) -> impl Future<Output = BufResult<usize, T>> {
self.submit_with_flags(op).map(|(res, _)| res)
}
/// Submit an operation to the runtime.
///
/// The difference between [`Runtime::submit`] is this method will return
/// the flags
///
/// You only need this when authoring your own [`OpCode`].
pub fn submit_with_flags<T: OpCode + 'static>(
&self,
op: T,
) -> impl Future<Output = (BufResult<usize, T>, u32)> {
match self.submit_raw(op) {
PushEntry::Pending(user_data) => Either::Left(OpFuture::new(user_data)),
PushEntry::Ready(res) => {
// submit_flags won't be ready immediately, if ready, it must be error without
// flags
Either::Right(ready((res, 0)))
}
}
}
#[cfg(feature = "time")]
pub(crate) fn create_timer(&self, delay: std::time::Duration) -> impl Future<Output = ()> {
let mut timer_runtime = self.timer_runtime.borrow_mut();
if let Some(key) = timer_runtime.insert(delay) {
Either::Left(TimerFuture::new(key))
} else {
Either::Right(std::future::ready(()))
}
}
pub(crate) fn cancel_op<T: OpCode>(&self, op: Key<T>) {
self.driver.borrow_mut().cancel(op);
}
#[cfg(feature = "time")]
pub(crate) fn cancel_timer(&self, key: usize) {
self.timer_runtime.borrow_mut().cancel(key);
}
pub(crate) fn poll_task<T: OpCode>(
&self,
cx: &mut Context,
op: Key<T>,
) -> PushEntry<Key<T>, (BufResult<usize, T>, u32)> {
instrument!(compio_log::Level::DEBUG, "poll_task", ?op);
let mut driver = self.driver.borrow_mut();
driver.pop(op).map_pending(|mut k| {
driver.update_waker(&mut k, cx.waker().clone());
k
})
}
#[cfg(feature = "time")]
pub(crate) fn poll_timer(&self, cx: &mut Context, key: usize) -> Poll<()> {
instrument!(compio_log::Level::DEBUG, "poll_timer", ?cx, ?key);
let mut timer_runtime = self.timer_runtime.borrow_mut();
if !timer_runtime.is_completed(key) {
debug!("pending");
timer_runtime.update_waker(key, cx.waker().clone());
Poll::Pending
} else {
debug!("ready");
Poll::Ready(())
}
}
/// Low level API to control the runtime.
///
/// Get the timeout value to be passed to [`Proactor::poll`].
pub fn current_timeout(&self) -> Option<Duration> {
#[cfg(not(feature = "time"))]
let timeout = None;
#[cfg(feature = "time")]
let timeout = self.timer_runtime.borrow().min_timeout();
timeout
}
/// Low level API to control the runtime.
///
/// Poll the inner proactor. It is equal to calling [`Runtime::poll_with`]
/// with [`Runtime::current_timeout`].
pub fn poll(&self) {
instrument!(compio_log::Level::DEBUG, "poll");
let timeout = self.current_timeout();
debug!("timeout: {:?}", timeout);
self.poll_with(timeout)
}
/// Low level API to control the runtime.
///
/// Poll the inner proactor with a custom timeout.
pub fn poll_with(&self, timeout: Option<Duration>) {
instrument!(compio_log::Level::DEBUG, "poll_with");
let mut driver = self.driver.borrow_mut();
match driver.poll(timeout) {
Ok(()) => {}
Err(e) => match e.kind() {
io::ErrorKind::TimedOut | io::ErrorKind::Interrupted => {
debug!("expected error: {e}");
}
_ => panic!("{e:?}"),
},
}
#[cfg(feature = "time")]
self.timer_runtime.borrow_mut().wake();
}
}
impl Drop for Runtime {
fn drop(&mut self) {
self.enter(|| {
while self.runnables.sync_runnables.pop().is_some() {}
let local_runnables = unsafe { self.runnables.local_runnables.get_unchecked() };
let mut local_runnables = local_runnables.borrow_mut();
while local_runnables.pop_front().is_some() {}
})
}
}
impl AsRawFd for Runtime {
fn as_raw_fd(&self) -> RawFd {
self.driver.borrow().as_raw_fd()
}
}
#[cfg(feature = "criterion")]
impl criterion::async_executor::AsyncExecutor for Runtime {
fn block_on<T>(&self, future: impl Future<Output = T>) -> T {
self.block_on(future)
}
}
#[cfg(feature = "criterion")]
impl criterion::async_executor::AsyncExecutor for &Runtime {
fn block_on<T>(&self, future: impl Future<Output = T>) -> T {
(**self).block_on(future)
}
}
/// Builder for [`Runtime`].
#[derive(Debug, Clone)]
pub struct RuntimeBuilder {
proactor_builder: ProactorBuilder,
event_interval: usize,
}
impl Default for RuntimeBuilder {
fn default() -> Self {
Self::new()
}
}
impl RuntimeBuilder {
/// Create the builder with default config.
pub fn new() -> Self {
Self {
proactor_builder: ProactorBuilder::new(),
event_interval: 61,
}
}
/// Replace proactor builder.
pub fn with_proactor(&mut self, builder: ProactorBuilder) -> &mut Self {
self.proactor_builder = builder;
self
}
/// Sets the number of scheduler ticks after which the scheduler will poll
/// for external events (timers, I/O, and so on).
///
/// A scheduler “tick” roughly corresponds to one poll invocation on a task.
pub fn event_interval(&mut self, val: usize) -> &mut Self {
self.event_interval = val;
self
}
/// Build [`Runtime`].
pub fn build(&self) -> io::Result<Runtime> {
Runtime::with_builder(self)
}
}
/// Spawns a new asynchronous task, returning a [`Task`] for it.
///
/// Spawning a task enables the task to execute concurrently to other tasks.
/// There is no guarantee that a spawned task will execute to completion.
///
/// ```
/// # compio_runtime::Runtime::new().unwrap().block_on(async {
/// let task = compio_runtime::spawn(async {
/// println!("Hello from a spawned task!");
/// 42
/// });
///
/// assert_eq!(
/// task.await.unwrap_or_else(|e| std::panic::resume_unwind(e)),
/// 42
/// );
/// # })
/// ```
///
/// ## Panics
///
/// This method doesn't create runtime. It tries to obtain the current runtime
/// by [`Runtime::with_current`].
pub fn spawn<F: Future + 'static>(future: F) -> JoinHandle<F::Output> {
Runtime::with_current(|r| r.spawn(future))
}
/// Spawns a blocking task in a new thread, and wait for it.
///
/// The task will not be cancelled even if the future is dropped.
///
/// ## Panics
///
/// This method doesn't create runtime. It tries to obtain the current runtime
/// by [`Runtime::with_current`].
pub fn spawn_blocking<T: Send + 'static>(
f: impl (FnOnce() -> T) + Send + Sync + 'static,
) -> JoinHandle<T> {
Runtime::with_current(|r| r.spawn_blocking(f))
}
/// Submit an operation to the current runtime, and return a future for it.
///
/// ## Panics
///
/// This method doesn't create runtime. It tries to obtain the current runtime
/// by [`Runtime::with_current`].
pub fn submit<T: OpCode + 'static>(op: T) -> impl Future<Output = BufResult<usize, T>> {
Runtime::with_current(|r| r.submit(op))
}
/// Submit an operation to the current runtime, and return a future for it with
/// flags.
///
/// ## Panics
///
/// This method doesn't create runtime. It tries to obtain the current runtime
/// by [`Runtime::with_current`].
pub fn submit_with_flags<T: OpCode + 'static>(
op: T,
) -> impl Future<Output = (BufResult<usize, T>, u32)> {
Runtime::with_current(|r| r.submit_with_flags(op))
}