const_primes/cache/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
//! This module contains the implementation of the type [`Primes`] (and related iterators),
//! which functions as a cache of prime numbers for related computations.
mod prime_factors;
mod primes_into_iter;
mod primes_iter;
pub use prime_factors::{PrimeFactorization, PrimeFactors};
pub use primes_into_iter::PrimesIntoIter;
pub use primes_iter::PrimesIter;
use crate::{primes, Underlying};
// region: Primes<N>
/// A wrapper around an array that consists of the first `N` primes.
/// Can use those primes for related computations.
/// Ensures that `N` is non-zero at compile time.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use const_primes::Primes;
/// const PRIMES: Primes<3> = Primes::new();
/// assert_eq!(PRIMES[2], 5);
/// assert_eq!(PRIMES.as_array(), &[2, 3, 5]);
/// ```
///
/// Reuse sieved primes for other computations:
///
/// ```
/// # use const_primes::Primes;
/// const CACHE: Primes<100> = Primes::new();
/// const PRIME_CHECK: Option<bool> = CACHE.is_prime(541);
/// const PRIME_COUNT: Option<usize> = CACHE.prime_pi(200);
///
/// assert_eq!(PRIME_CHECK, Some(true));
/// assert_eq!(PRIME_COUNT, Some(46));
///
/// // If questions are asked about numbers outside the cache it returns None
/// assert_eq!(CACHE.is_prime(1000), None);
/// assert_eq!(CACHE.prime_pi(1000), None);
/// ```
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "zerocopy",
derive(zerocopy::IntoBytes, zerocopy::Immutable, zerocopy::KnownLayout)
)]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
)]
#[cfg_attr(feature = "zerocopy", repr(transparent))]
pub struct Primes<const N: usize>(
#[cfg_attr(feature = "serde", serde(with = "serde_arrays"))] [Underlying; N],
);
impl<const N: usize> Primes<N> {
/// Generates a new instance that contains the first `N` primes.
///
/// Uses a [segmented sieve of Eratosthenes](https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes#Segmented_sieve).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use const_primes::Primes;
/// const PRIMES: Primes<3> = Primes::new();
/// assert_eq!(PRIMES.as_array(), &[2, 3, 5]);
/// ```
///
/// Determine `N` through type inference
///
/// ```
/// # use const_primes::Primes;
/// assert_eq!(Primes::new().as_array(), &[2, 3, 5, 7, 11]);
/// ```
///
/// Specify `N` manually
///
/// ```
/// # use const_primes::Primes;
/// let primes = Primes::<5>::new();
/// assert_eq!(primes.as_array(), &[2, 3, 5, 7, 11]);
/// ```
///
/// # Errors
///
/// It is a compile error to use an `N` of 0.
///
/// ```compile_fail
/// # use const_primes::Primes;
/// const NO_PRIMES: Primes<0> = Primes::new();
/// ```
#[must_use = "the associated method only returns a new value"]
pub const fn new() -> Self {
const { assert!(N > 0, "`N` must be at least 1") }
Self(primes())
}
/// Returns whether `n` is prime, if it is smaller than or equal to the largest prime in `self`.
///
/// Uses a binary search.
///
/// # Example
///
/// Basic usage:
///
/// ```
/// # use const_primes::Primes;
/// const PRIMES: Primes<100> = Primes::new();
/// const TMOLTUAE: Option<bool> = PRIMES.is_prime(42);
///
/// assert_eq!(PRIMES.is_prime(13), Some(true));
/// assert_eq!(TMOLTUAE, Some(false));
/// // 1000 is larger than 541, the largest prime in the cache,
/// // so we don't know whether it's prime.
/// assert_eq!(PRIMES.is_prime(1000), None);
/// ```
#[must_use = "the method only returns a new value and does not modify `self`"]
pub const fn is_prime(&self, n: u32) -> Option<bool> {
match self.binary_search(n) {
Ok(_) => Some(true),
Err(i) => {
if i < N {
Some(false)
} else {
None
}
}
}
}
/// Returns the number of primes smaller than or equal to `n`, if it's smaller than or equal to the largest prime in `self`.
///
/// Uses a binary search to count the primes.
///
/// # Example
///
/// Basic usage:
///
/// ```
/// # use const_primes::Primes;
/// const CACHE: Primes<100> = Primes::new();
/// const COUNT1: Option<usize> = CACHE.prime_pi(500);
/// const COUNT2: Option<usize> = CACHE.prime_pi(11);
/// const OUT_OF_BOUNDS: Option<usize> = CACHE.prime_pi(1_000);
///
/// assert_eq!(COUNT1, Some(95));
/// assert_eq!(COUNT2, Some(5));
/// assert_eq!(OUT_OF_BOUNDS, None);
/// ```
#[must_use = "the method only returns a new value and does not modify `self`"]
pub const fn prime_pi(&self, n: Underlying) -> Option<usize> {
match self.binary_search(n) {
Ok(i) => Some(i + 1),
Err(maybe_i) => {
if maybe_i < N {
Some(maybe_i)
} else {
None
}
}
}
}
/// Returns an iterator over the prime factors of the given number in increasing order as well as their
/// multiplicities.
///
/// If a number contains prime factors larger than the largest prime in `self`,
/// they will not be yielded by the iterator, but their product can be retrieved by calling
/// [`remainder`](PrimeFactorization::remainder) on the iterator.
///
/// If you do not need to know the multiplicity of each prime factor,
/// it may be faster to use [`prime_factors`](Self::prime_factors).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use const_primes::Primes;
/// // Contains the primes [2, 3, 5]
/// const CACHE: Primes<3> = Primes::new();
///
/// assert_eq!(CACHE.prime_factorization(15).collect::<Vec<_>>(), &[(3, 1), (5, 1)]);
/// ```
///
/// The second element of the returned tuples is the multiplicity of the prime in the number:
///
/// ```
/// # use const_primes::Primes;
/// # const CACHE: Primes<3> = Primes::new();
/// // 1024 = 2^10
/// assert_eq!(CACHE.prime_factorization(1024).next(), Some((2, 10)));
/// ```
///
/// 294 has 7 as a prime factor, but 7 is not in the cache:
///
/// ```
/// # use const_primes::Primes;
/// # const CACHE: Primes<3> = Primes::new();
/// // 294 = 2*3*7*7
/// let mut factorization_of_294 = CACHE.prime_factorization(294);
///
/// // only 2 and 3 are in the cache:
/// assert_eq!(factorization_of_294.by_ref().collect::<Vec<_>>(), &[(2, 1), (3, 1)]);
///
/// // the factor of 7*7 can be found with the remainder function:
/// assert_eq!(factorization_of_294.remainder(), Some(49));
/// ```
#[inline]
pub fn prime_factorization(&self, number: Underlying) -> PrimeFactorization<'_> {
PrimeFactorization::new(&self.0, number)
}
/// Returns an iterator over all the prime factors of the given number in increasing order.
///
/// If a number contains prime factors larger than the largest prime in `self`,
/// they will not be yielded by the iterator, but their product can be retrieved by calling
/// [`remainder`](PrimeFactors::remainder) on the iterator.
///
/// If you also wish to know the multiplicity of each prime factor of the number,
/// take a look at [`prime_factorization`](Self::prime_factorization).
///
/// # Examples
///
/// ```
/// # use const_primes::Primes;
/// // Contains [2, 3, 5]
/// const CACHE: Primes<3> = Primes::new();
///
/// assert_eq!(CACHE.prime_factors(3*5).collect::<Vec<_>>(), &[3, 5]);
/// assert_eq!(CACHE.prime_factors(2*2*2*2*3).collect::<Vec<_>>(), &[2, 3]);
/// ```
///
/// 294 has 7 as a prime factor, but 7 is not in the cache:
///
/// ```
/// # use const_primes::Primes;
/// # const CACHE: Primes<3> = Primes::new();
/// // 294 = 2*3*7*7
/// let mut factors_of_294 = CACHE.prime_factors(294);
///
/// // only 2 and 3 are in the cache
/// assert_eq!(factors_of_294.by_ref().collect::<Vec<_>>(), &[2, 3]);
///
/// // the factor of 7*7 can be found with the remainder function
/// assert_eq!(factors_of_294.remainder(), Some(49));
/// ```
#[inline]
pub fn prime_factors(&self, number: Underlying) -> PrimeFactors<'_> {
PrimeFactors::new(&self.0, number)
}
// region: Next prime
/// Returns the largest prime less than `n`.
/// If `n` is 0, 1, 2, or larger than the largest prime in `self` this returns `None`.
///
/// Uses a binary search.
///
/// # Example
///
/// ```
/// # use const_primes::Primes;
/// const CACHE: Primes<100> = Primes::new();
/// const PREV400: Option<u32> = CACHE.previous_prime(400);
/// assert_eq!(PREV400, Some(397));
/// ```
#[must_use = "the method only returns a new value and does not modify `self`"]
pub const fn previous_prime(&self, n: Underlying) -> Option<Underlying> {
if n <= 2 {
None
} else {
match self.binary_search(n) {
Ok(i) | Err(i) => {
if i > 0 && i < N {
Some(self.0[i - 1])
} else {
None
}
}
}
}
}
/// Returns the smallest prime greater than `n`.
/// If `n` is larger than or equal to the largest prime in `self` this returns `None`.
///
/// Uses a binary search.
///
/// # Example
///
/// ```
/// # use const_primes::Primes;
/// const CACHE: Primes<100> = Primes::new();
/// const NEXT: Option<u32> = CACHE.next_prime(400);
/// assert_eq!(NEXT, Some(401));
/// ```
#[must_use = "the method only returns a new value and does not modify `self`"]
pub const fn next_prime(&self, n: Underlying) -> Option<Underlying> {
match self.binary_search(n) {
Ok(i) => {
if i + 1 < self.len() {
Some(self.0[i + 1])
} else {
None
}
}
Err(i) => {
if i < N {
Some(self.0[i])
} else {
None
}
}
}
}
// endregion: Next prime
/// Searches the underlying array of primes for the target integer.
///
/// If the target is found it returns a [`Result::Ok`] that contains the index of the matching element.
/// If the target is not found in the array a [`Result::Err`] is returned that indicates where the
/// target could be inserted into the array while maintaining the sorted order.
///
/// # Example
///
/// Basic usage:
///
/// ```
/// # use const_primes::Primes;
/// // [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
/// const PRIMES: Primes<10> = Primes::new();
///
/// const WHERE_29: Result<usize, usize> = PRIMES.binary_search(29);
/// const WHERE_6: Result<usize, usize> = PRIMES.binary_search(6);
/// const WHERE_1000: Result<usize, usize> = PRIMES.binary_search(1_000);
///
/// assert_eq!(WHERE_29, Ok(9));
/// assert_eq!(WHERE_6, Err(3));
/// assert_eq!(WHERE_1000, Err(10));
/// ```
#[must_use = "the method only returns a new value and does not modify `self`"]
pub const fn binary_search(&self, target: Underlying) -> Result<usize, usize> {
let mut size = N;
let mut left = 0;
let mut right = size;
while left < right {
let mid = left + size / 2;
let candidate = self.0[mid];
if candidate < target {
left = mid + 1;
} else if candidate > target {
right = mid;
} else {
return Ok(mid);
}
size = right - left;
}
Err(left)
}
// region: Conversions
/// Converts `self` into an array of size `N`.
///
/// # Example
///
/// Basic usage:
///
/// ```
/// # use const_primes::Primes;
/// const PRIMES: [u32; 5] = Primes::new().into_array();
/// assert_eq!(PRIMES, [2, 3, 5, 7, 11]);
/// ```
#[inline]
#[must_use = "the method only returns a new value and does not modify `self`"]
pub const fn into_array(self) -> [Underlying; N] {
self.0
}
/// Returns a reference to the underlying array.
#[inline]
#[must_use = "the method only returns a new value and does not modify `self`"]
pub const fn as_array(&self) -> &[Underlying; N] {
&self.0
}
/// Returns a slice that contains the entire underlying array.
#[inline]
#[must_use = "the method only returns a new value and does not modify `self`"]
pub const fn as_slice(&self) -> &[Underlying] {
self.0.as_slice()
}
/// Returns a borrowing iterator over the primes.
///
/// # Example
///
/// Basic usage:
///
/// ```
/// # use const_primes::Primes;
/// const PRIMES: Primes<10> = Primes::new();
///
/// let mut primes = PRIMES.iter();
///
/// assert_eq!(primes.nth(5), Some(&13));
/// assert_eq!(primes.next(), Some(&17));
/// assert_eq!(primes.as_slice(), &[19, 23, 29]);
/// ```
#[inline]
pub fn iter(&self) -> PrimesIter<'_> {
PrimesIter::new(IntoIterator::into_iter(&self.0))
}
// endregion: Conversions
/// Returns a reference to the element at the given index if it is within bounds.
///
/// # Example
///
/// Basic usage:
///
/// ```
/// # use const_primes::Primes;
/// const PRIMES: Primes<5> = Primes::new();
/// const THIRD_PRIME: Option<&u32> = PRIMES.get(2);
/// assert_eq!(THIRD_PRIME, Some(&5));
/// ```
#[inline]
#[must_use = "the method only returns a new value and does not modify `self`"]
pub const fn get(&self, index: usize) -> Option<&Underlying> {
if index < N {
Some(&self.0[index])
} else {
None
}
}
/// Returns a reference to the last prime in `self`. This is also the largest prime in `self`.
///
/// # Example
///
/// Basic usage:
///
/// ```
/// # use const_primes::Primes;
/// const PRIMES: Primes<5> = Primes::new();
/// assert_eq!(PRIMES.last(), &11);
/// ```
#[inline]
#[must_use = "the method only returns a new value and does not modify `self`"]
pub const fn last(&self) -> &Underlying {
match self.0.last() {
Some(l) => l,
None => panic!("unreachable: an empty `Primes<N>` can not be created"),
}
}
/// Returns the number of primes in `self`.
///
/// # Example
///
/// Basic usage:
///
/// ```
/// # use const_primes::Primes;
/// const PRIMES: Primes<5> = Primes::new();
/// assert_eq!(PRIMES.len(), 5);
/// ```
#[inline]
#[must_use = "the method only returns a new value and does not modify `self`"]
// Can never be empty since we panic if the user tries to create an empty `Primes`.
#[allow(clippy::len_without_is_empty)]
pub const fn len(&self) -> usize {
N
}
/// Returns the value of the Euler totient function of `n`:
/// the number of positive integers up to `n` that are relatively prime to it.
///
/// # Example
///
/// ```
/// # use const_primes::{Primes, cache::PartialTotient};
/// const CACHE: Primes<3> = Primes::new();
/// const TOTIENT_OF_6: Result<u32, PartialTotient> = CACHE.totient(2*3);
///
/// assert_eq!(TOTIENT_OF_6, Ok(2));
/// ```
///
/// # Errors
///
/// The totient function is computed here as the product over all factors of the form p^(k-1)*(p-1) where
/// p is the primes in the prime factorization of `n` and k is their multiplicity.
/// If `n` contains prime factors that are not part of `self`, a [`Result::Err`] is returned
/// that contains a [`PartialTotient`] struct that contains the result from using only the primes in `self`,
/// as well as the product of the prime factors that are not included in `self`.
///
/// # Error example
///
/// The number 2450 is equal to 2\*5\*5\*7\*7.
/// If the cache does not contain 7 the function runs out of primes after 5,
/// and can not finish the computation:
///
/// ```
/// # use const_primes::{Primes, cache::PartialTotient};
/// // Contains the primes [2, 3, 5]
/// const CACHE: Primes<3> = Primes::new();
/// const TOTIENT_OF_2450: Result<u32, PartialTotient> = CACHE.totient(2*5*5*7*7);
///
/// assert_eq!(
/// TOTIENT_OF_2450,
/// Err( PartialTotient {
/// // totient(2*5*5) = 20
/// totient_using_known_primes: 20,
/// product_of_unknown_prime_factors: 49
/// })
/// );
/// ```
pub const fn totient(&self, mut n: Underlying) -> Result<Underlying, PartialTotient> {
if n == 0 {
return Ok(0);
}
let mut i = 0;
let mut ans = 1;
while let Some(&prime) = self.get(i) {
let mut count = 0;
while n % prime == 0 {
n /= prime;
count += 1;
}
if count > 0 {
ans *= prime.pow(count - 1) * (prime - 1);
}
if n == 1 {
break;
}
i += 1;
}
if n == 1 {
Ok(ans)
} else {
Err(PartialTotient {
totient_using_known_primes: ans,
product_of_unknown_prime_factors: n,
})
}
}
}
/// Contains the result of a partially successful evaluation of the [`totient`](Primes::totient) function.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
)]
pub struct PartialTotient {
/// The result of computing the totient function with only the primes in the related [`Primes`] struct.
pub totient_using_known_primes: Underlying,
/// The product of all remaining prime factors of the number.
pub product_of_unknown_prime_factors: Underlying,
}
impl<const N: usize> Default for Primes<N> {
/// It is a compile error if `N` is 0.
fn default() -> Self {
const { assert!(N > 0, "`N` must be at least 1") }
Self(primes())
}
}
impl<const N: usize, I> core::ops::Index<I> for Primes<N>
where
I: core::slice::SliceIndex<[Underlying]>,
{
type Output = I::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
self.0.index(index)
}
}
impl<const N: usize> From<Primes<N>> for [Underlying; N] {
#[inline]
fn from(const_primes: Primes<N>) -> Self {
const_primes.0
}
}
// region: AsRef
impl<const N: usize> AsRef<[Underlying]> for Primes<N> {
#[inline]
fn as_ref(&self) -> &[Underlying] {
&self.0
}
}
impl<const N: usize> AsRef<[Underlying; N]> for Primes<N> {
#[inline]
fn as_ref(&self) -> &[Underlying; N] {
&self.0
}
}
// endregion: AsRef
// region: IntoIterator
impl<const N: usize> IntoIterator for Primes<N> {
type Item = Underlying;
type IntoIter = PrimesIntoIter<N>;
#[inline]
fn into_iter(self) -> Self::IntoIter {
PrimesIntoIter::new(self.0.into_iter())
}
}
impl<'a, const N: usize> IntoIterator for &'a Primes<N> {
type IntoIter = PrimesIter<'a>;
type Item = &'a Underlying;
fn into_iter(self) -> Self::IntoIter {
PrimesIter::new(IntoIterator::into_iter(&self.0))
}
}
// endregion: IntoIterator
// endregion: Primes<N>
#[cfg(test)]
mod test {
use crate::next_prime;
use super::*;
// region: TraitImpls
#[test]
fn verify_impl_from_primes_traits() {
const N: usize = 10;
const P: Primes<N> = Primes::new();
let p: [Underlying; N] = P.into();
assert_eq!(p, P.as_ref());
assert_eq!(
P.as_array(),
<Primes<N> as AsRef<[Underlying; N]>>::as_ref(&P)
);
}
#[test]
fn check_into_iter() {
const P: Primes<10> = Primes::new();
for (i, prime) in P.into_iter().enumerate() {
assert_eq!(prime, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29][i]);
}
}
// endregion: TraitImpls
#[test]
fn check_binary_search() {
const CACHE: Primes<100> = Primes::new();
type BSResult = Result<usize, usize>;
const FOUND2: BSResult = CACHE.binary_search(2);
const INSERT0: BSResult = CACHE.binary_search(0);
const INSERT4: BSResult = CACHE.binary_search(4);
const FOUND541: BSResult = CACHE.binary_search(541);
const NOINFO542: BSResult = CACHE.binary_search(542);
const BIG: BSResult = CACHE.binary_search(1000000);
assert_eq!(FOUND2, Ok(0));
assert_eq!(INSERT0, Err(0));
assert_eq!(INSERT4, Err(2));
assert_eq!(FOUND541, Ok(99));
assert_eq!(NOINFO542, Err(100));
assert_eq!(BIG, Err(100));
}
#[test]
fn test_into_iter() {
const PRIMES: Primes<10> = Primes::new();
for (&prime, ans) in (&PRIMES)
.into_iter()
.zip([2, 3, 5, 7, 11, 13, 17, 19, 23, 29])
{
assert_eq!(prime, ans);
}
}
#[test]
fn check_previous_prime() {
const CACHE: Primes<100> = Primes::new();
const PREV0: Option<Underlying> = CACHE.previous_prime(0);
const PREV400: Option<Underlying> = CACHE.previous_prime(400);
const PREV541: Option<Underlying> = CACHE.previous_prime(541);
const PREV542: Option<Underlying> = CACHE.previous_prime(542);
const PREVS: [Underlying; 18] = [
2, 3, 3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 17, 17, 19,
];
for (i, prev) in PREVS.into_iter().enumerate() {
assert_eq!(Some(prev), CACHE.previous_prime(i as u32 + 3));
}
assert_eq!(PREV0, None);
assert_eq!(PREV400, Some(397));
assert_eq!(PREV541, Some(523));
assert_eq!(PREV542, None);
}
#[test]
fn check_prime_factorization() {
const CACHE: Primes<3> = Primes::new();
let mut factorization_of_14 = CACHE.prime_factorization(14);
assert_eq!(factorization_of_14.next(), Some((2, 1)));
assert_eq!(factorization_of_14.next(), None);
assert_eq!(factorization_of_14.remainder(), Some(7));
let mut factorization_of_15 = CACHE.prime_factorization(15);
assert_eq!(factorization_of_15.next(), Some((3, 1)));
assert_eq!(factorization_of_15.next(), Some((5, 1)));
assert!(factorization_of_15.remainder().is_none());
let mut factorization_of_270 = CACHE.prime_factorization(2 * 3 * 3 * 3 * 5);
assert_eq!(factorization_of_270.next(), Some((2, 1)));
assert_eq!(factorization_of_270.next(), Some((3, 3)));
assert_eq!(factorization_of_270.next(), Some((5, 1)));
}
#[test]
fn check_prime_factors() {
const CACHE: Primes<3> = Primes::new();
let mut factors_of_14 = CACHE.prime_factors(14);
assert_eq!(factors_of_14.next(), Some(2));
assert_eq!(factors_of_14.next(), None);
assert_eq!(factors_of_14.remainder(), Some(7));
let mut factors_of_15 = CACHE.prime_factors(15);
assert_eq!(factors_of_15.next(), Some(3));
assert_eq!(factors_of_15.next(), Some(5));
assert!(factors_of_15.remainder().is_none());
let mut factors_of_270 = CACHE.prime_factors(2 * 3 * 3 * 3 * 5);
assert_eq!(factors_of_270.next(), Some(2));
assert_eq!(factors_of_270.next(), Some(3));
assert_eq!(factors_of_270.next(), Some(5));
}
#[test]
fn check_next_prime() {
const CACHE: Primes<100> = Primes::new();
const SPGEQ0: Option<Underlying> = CACHE.next_prime(0);
const SPGEQ400: Option<Underlying> = CACHE.next_prime(400);
const SPGEQ541: Option<Underlying> = CACHE.next_prime(540);
const SPGEQ542: Option<Underlying> = CACHE.next_prime(541);
assert_eq!(SPGEQ0, Some(2));
assert_eq!(SPGEQ400, Some(401));
assert_eq!(SPGEQ541, Some(541));
assert_eq!(SPGEQ542, None);
const N: usize = 31;
const NEXT_PRIME: [u32; N] = [
2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, 19, 23, 23, 23, 23,
29, 29, 29, 29, 29, 29, 31, 31,
];
const P: Primes<N> = Primes::new();
for (n, next) in NEXT_PRIME.iter().enumerate().take(N) {
assert_eq!(P.next_prime(n as u32), Some(*next));
}
}
#[test]
fn verify_into_array() {
const N: usize = 10;
const P: Primes<N> = Primes::new();
const A: [Underlying; N] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
assert_eq!(P.into_array(), A);
}
#[test]
fn verify_as_slice() {
const N: usize = 10;
const P: Primes<N> = Primes::new();
const A: [Underlying; N] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
assert_eq!(P.as_slice(), &A);
}
#[test]
fn verify_as_array() {
const N: usize = 10;
const P: Primes<N> = Primes::new();
const A: [Underlying; N] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
assert_eq!(P.as_array(), &A);
}
#[test]
fn check_get() {
const N: usize = 10;
const P: Primes<N> = Primes::new();
const A: [Underlying; N] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
for (n, gotten) in A.iter().enumerate().take(N) {
assert_eq!(P.get(n), Some(gotten));
}
for n in N + 1..2 * N {
assert!(P.get(n).is_none());
}
}
#[test]
fn check_last_and_len() {
const PRIMES: [Underlying; 10] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
macro_rules! check_last_n {
($($n:literal),+) => {
$(
{
let p: Primes<$n> = Primes::new();
assert_eq!(*p.last(), PRIMES[$n - 1]);
assert_eq!(p.len(), $n);
assert_eq!(*p.last(), p[$n - 1]);
}
)+
};
}
check_last_n!(1, 2, 3, 4, 5, 6, 7, 8, 9);
}
#[test]
fn check_count_primes_leq() {
const N: usize = 79;
const PRIME_COUNTS: [usize; N] = [
0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,
10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15,
15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20,
21, 21, 21, 21, 21, 21,
];
const P: Primes<N> = Primes::new();
for (n, count) in PRIME_COUNTS.iter().enumerate().take(N) {
assert_eq!(P.prime_pi(n as u32), Some(*count));
}
for n in *P.last() + 1..*P.last() * 2 {
assert!(P.prime_pi(n).is_none());
}
}
#[test]
fn check_iter() {
const P: Primes<10> = Primes::new();
for (p1, p2) in P.iter().zip([2, 3, 5, 7, 11, 13, 17, 19, 23, 29].iter()) {
assert_eq!(p1, p2);
}
}
#[test]
fn check_totient() {
const TOTIENTS: [Underlying; 101] = [
0, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20,
12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46,
16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44,
24, 70, 24, 72, 36, 40, 36, 60, 24, 78, 32, 54, 40, 82, 24, 64, 42, 56, 40, 88, 24, 72,
44, 60, 46, 72, 32, 96, 42, 60, 40,
];
const NEXT_OUTSIDE: Underlying = match next_prime(*BIG_CACHE.last() as u64) {
Some(np) => np as Underlying,
None => panic!(),
};
const SMALL_CACHE: Primes<3> = Primes::new();
const BIG_CACHE: Primes<100> = Primes::new();
assert_eq!(SMALL_CACHE.totient(6), Ok(2));
assert_eq!(
SMALL_CACHE.totient(2 * 5 * 5 * 7 * 7),
Err(PartialTotient {
totient_using_known_primes: 20,
product_of_unknown_prime_factors: 49
})
);
for (i, totient) in TOTIENTS.into_iter().enumerate() {
assert_eq!(BIG_CACHE.totient(i as Underlying), Ok(totient));
if i != 0 {
assert_eq!(
BIG_CACHE.totient((i as Underlying) * NEXT_OUTSIDE),
Err(PartialTotient {
totient_using_known_primes: totient,
product_of_unknown_prime_factors: NEXT_OUTSIDE
})
);
}
}
}
#[cfg(feature = "zerocopy")]
#[test]
fn test_as_bytes() {
use zerocopy::IntoBytes;
const P: Primes<3> = Primes::new();
assert_eq!(P.as_bytes(), &[2, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0]);
}
#[cfg(feature = "serde")]
#[test]
fn test_serde() {
const P: Primes<3> = Primes::new();
const STRING_VERSION: &str = "[2,3,5]";
assert_eq!(serde_json::to_string(&P).unwrap(), STRING_VERSION);
assert_eq!(P, serde_json::from_str(STRING_VERSION).unwrap());
}
}