const_primes/
integer_math.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
//! This module contains const math operations on integers that are used by the other
//! functions in the crate.

/// Returns the largest integer smaller than or equal to `√n`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use const_primes::isqrt;
/// const ISQRT25: u64 = isqrt(25);
/// const ISQRT35: u64 = isqrt(35);
/// const ISQRT36: u64 = isqrt(36);
///
/// assert_eq!(ISQRT25, 5);
/// assert_eq!(ISQRT35, 5);
/// assert_eq!(ISQRT36, 6);
/// ```
#[must_use]
pub const fn isqrt(n: u64) -> u64 {
    if n <= 1 {
        n
    } else {
        let mut x0 = u64::pow(2, n.ilog2() / 2 + 1);
        let mut x1 = (x0 + n / x0) / 2;
        while x1 < x0 {
            x0 = x1;
            x1 = (x0 + n / x0) / 2;
        }
        x0
    }
}

/// Calculates (`base` ^ `exp`) mod `modulo` without overflow.
#[must_use]
pub const fn mod_pow(mut base: u64, mut exp: u64, modulo: u64) -> u64 {
    let mut res = 1;

    base %= modulo;

    while exp > 0 {
        if exp % 2 == 1 {
            res = mod_mul(res, base, modulo);
        }
        base = mod_mul(base, base, modulo);
        exp >>= 1;
    }

    res
}

/// Calculates (`a` * `b`) mod `modulo` without overflow.
#[must_use]
pub const fn mod_mul(a: u64, b: u64, modulo: u64) -> u64 {
    ((a as u128 * b as u128) % modulo as u128) as u64
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn check_isqrt() {
        for x in 0..1_000_000 {
            assert_eq!(isqrt(x), (x as f64).sqrt().floor() as u64);
        }
        assert_eq!(
            f64::from(u32::MAX).sqrt().floor() as u64,
            isqrt(u64::from(u32::MAX))
        );
        assert_eq!(isqrt(u64::MAX - 1), 4294967295);
        assert_eq!(isqrt(u64::MAX), 4294967295);
    }
}