const_primes/integer_math.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
//! This module contains const math operations on integers that are used by the other
//! functions in the crate.
/// Returns the largest integer smaller than or equal to `√n`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use const_primes::isqrt;
/// const ISQRT25: u64 = isqrt(25);
/// const ISQRT35: u64 = isqrt(35);
/// const ISQRT36: u64 = isqrt(36);
///
/// assert_eq!(ISQRT25, 5);
/// assert_eq!(ISQRT35, 5);
/// assert_eq!(ISQRT36, 6);
/// ```
#[must_use]
pub const fn isqrt(n: u64) -> u64 {
if n <= 1 {
n
} else {
let mut x0 = u64::pow(2, n.ilog2() / 2 + 1);
let mut x1 = (x0 + n / x0) / 2;
while x1 < x0 {
x0 = x1;
x1 = (x0 + n / x0) / 2;
}
x0
}
}
/// Calculates (`base` ^ `exp`) mod `modulo` without overflow.
#[must_use]
pub const fn mod_pow(mut base: u64, mut exp: u64, modulo: u64) -> u64 {
let mut res = 1;
base %= modulo;
while exp > 0 {
if exp % 2 == 1 {
res = mod_mul(res, base, modulo);
}
base = mod_mul(base, base, modulo);
exp >>= 1;
}
res
}
/// Calculates (`a` * `b`) mod `modulo` without overflow.
#[must_use]
pub const fn mod_mul(a: u64, b: u64, modulo: u64) -> u64 {
((a as u128 * b as u128) % modulo as u128) as u64
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn check_isqrt() {
for x in 0..1_000_000 {
assert_eq!(isqrt(x), (x as f64).sqrt().floor() as u64);
}
assert_eq!(
f64::from(u32::MAX).sqrt().floor() as u64,
isqrt(u64::from(u32::MAX))
);
assert_eq!(isqrt(u64::MAX - 1), 4294967295);
assert_eq!(isqrt(u64::MAX), 4294967295);
}
}