const_primes/
sieve.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
//! This module contains implementations of prime sieves.

use core::fmt;

use crate::isqrt;

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) struct SegmentedSieveError;

impl fmt::Display for SegmentedSieveError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "the upper limit was smaller than `N`")
    }
}

impl core::error::Error for SegmentedSieveError {}

/// Uses the primalities of the first `N` integers in `base_sieve` to sieve the numbers in the range `[upper_limit - N, upper_limit)`.
/// Assumes that the base sieve contains the prime status of the `N` fist integers. The output is only meaningful
/// for the numbers below `N^2`.
///
/// # Errors
///
/// Returns an error if `upper_limit` < `N`
#[must_use = "the function only returns a new value and does not modify its inputs"]
pub(crate) const fn sieve_segment<const N: usize>(
    base_sieve: &[bool; N],
    upper_limit: u64,
) -> Result<[bool; N], SegmentedSieveError> {
    let mut segment_sieve = [true; N];

    let lower_limit = match upper_limit.checked_sub(N as u64) {
        Some(diff) => diff,
        None => return Err(SegmentedSieveError),
    };

    if lower_limit == 0 && N > 1 {
        // If the lower limit is 0 we can just return the base sieve.
        return Ok(*base_sieve);
    } else if lower_limit == 1 && N > 0 {
        // In case 1 is included in the upper sieve we need to treat it as a special case
        // since it's not a multiple of any prime in `base_sieve` even though it's not prime.
        segment_sieve[0] = false;
    }

    let mut i = 0;
    while i < N {
        if base_sieve[i] {
            let prime = i as u64;

            // Find the smallest multiple of the prime larger than or equal to `lower_limit`.
            let mut composite = (lower_limit / prime) * prime;
            if composite < lower_limit {
                composite += prime;
            }
            if composite == prime {
                composite += prime;
            }

            // Sieve all numbers in the segment that are multiples of the prime.
            while composite < upper_limit {
                segment_sieve[(composite - lower_limit) as usize] = false;
                composite += prime;
            }
        }
        i += 1;
    }

    Ok(segment_sieve)
}

/// Returns an array of size `N` that indicates which of the `N` largest integers smaller than `upper_limit` are prime.
///
/// Uses a sieve of size `MEM` during evaluation, but stores only the requested values in the output array.
/// `MEM` must be large enough for the sieve to be able to determine the prime status of all numbers in the requested range,
/// that is: `MEM`^2 must be at least as large as `upper_limit`.
///
/// If you just want the prime status of the first `N` integers, see [`sieve`], and if you want the prime status of
/// the integers above some number, see [`sieve_geq`].
///
/// If you do not wish to compute the size requirement of the sieve manually, take a look at [`sieve_segment!`](crate::sieve_segment).
///
/// # Examples
///
/// Basic usage
///
/// ```
/// # use const_primes::sieve_lt;
/// // The five largest numbers smaller than 30 are 25, 26, 27, 28 and 29.
/// const N: usize = 5;
/// const LIMIT: u64 = 30;
/// // We thus need a memory size of at least 6, since 5*5 < 29, and therefore isn't enough.
/// const MEM: usize = 6;
/// const PRIME_STATUSES: [bool; N] = match sieve_lt::<N, MEM>(LIMIT) {Ok(s) => s, Err(_) => panic!()};
///
/// assert_eq!(
///     PRIME_STATUSES,
/// //   25     26     27     28     29
///     [false, false, false, false, true],
/// );
/// ```
///
/// Sieve limited ranges of large values. Functions provided by the crate can help you
/// compute the needed sieve size:
///
/// ```
/// # use const_primes::{sieve_lt, SieveError};
/// use const_primes::isqrt;
/// const N: usize = 3;
/// const LIMIT: u64 = 5_000_000_031;
/// const MEM: usize = isqrt(LIMIT) as usize + 1;
/// const BIG_PRIME_STATUSES: Result<[bool; N], SieveError> = sieve_lt::<N, MEM>(LIMIT);
/// assert_eq!(
///     BIG_PRIME_STATUSES,
/// //      5_000_000_028  5_000_000_029  5_000_000_030
///     Ok([false,         true,          false]),
/// );
/// ```
///
/// # Errors
///
/// Returns an error if `upper_limit` is larger than `MEM`^2:
///
/// ```
/// # use const_primes::{sieve_lt, SieveError};
/// const PS: Result<[bool; 5], SieveError> = sieve_lt::<5, 5>(26);
/// assert_eq!(PS, Err(SieveError::TooSmallSieveSize));
/// ```
///
/// or smaller than `N`:
///
/// ```
/// # use const_primes::{sieve_lt, SieveError};
/// const PS: Result<[bool; 5], SieveError> = sieve_lt::<5, 5>(4);
/// assert_eq!(PS, Err(SieveError::TooSmallLimit));
/// ```
///
/// It is a compile error if `MEM` is smaller than `N`, or if `MEM`^2 does not fit in a `u64`:
///
/// ```compile_fail
/// # use const_primes::{sieve_lt, SieveError};
/// const TOO_SMALL_MEM: Result<[bool; 5], SieveError> = sieve_lt::<5, 2>(20);
/// ```
///
/// ```compile_fail
/// # use const_primes::{sieve_lt, SieveError};
/// const TOO_LARGE_MEM: Result<[bool; 5], SieveError> = sieve_lt::<5, 1_000_000_000_000>(20);
/// ```
#[must_use = "the function only returns a new value and does not modify its input"]
pub const fn sieve_lt<const N: usize, const MEM: usize>(
    upper_limit: u64,
) -> Result<[bool; N], SieveError> {
    const { assert!(MEM >= N, "`MEM` must be at least as large as `N`") }

    let mem_sqr = const {
        let mem64 = MEM as u64;
        match mem64.checked_mul(mem64) {
            Some(mem_sqr) => mem_sqr,
            None => panic!("`MEM`^2 must fit in a `u64`"),
        }
    };

    if upper_limit > mem_sqr {
        return Err(SieveError::TooSmallSieveSize);
    }

    let n64 = N as u64;

    if upper_limit < n64 {
        return Err(SieveError::TooSmallLimit);
    }

    if N == 0 {
        return Ok([false; N]);
    }

    if upper_limit == n64 {
        // If we are not interested in sieving a larger range we can just return early.
        return Ok(sieve());
    }

    // Use a normal sieve of Eratosthenes for the first N numbers.
    let base_sieve: [bool; MEM] = sieve();

    // Use the result to sieve the higher range.
    let (offset, upper_sieve) = match sieve_segment(&base_sieve, upper_limit) {
        Ok(res) => (0, res),
        // The sieve contained more entries than there are non-negative numbers below the upper limit, just use the base sieve.
        Err(_) => ((MEM as u64 - upper_limit) as usize, base_sieve),
    };

    let mut i = 0;
    let mut ans = [false; N];
    while i < N {
        ans[N - 1 - i] = upper_sieve[MEM - 1 - i - offset];
        i += 1;
    }
    Ok(ans)
}

/// Returns an array of size `N` where the value at a given index indicates whether the index is prime.
///
/// # Example
///
/// ```
/// # use const_primes::sieve;
/// const PRIMALITY: [bool; 10] = sieve();
/// //                     0      1      2     3     4      5     6      7     8      9
/// assert_eq!(PRIMALITY, [false, false, true, true, false, true, false, true, false, false]);
/// ```
#[must_use = "the function only returns a new value"]
pub const fn sieve<const N: usize>() -> [bool; N] {
    let mut sieve = [true; N];
    if N == 0 {
        return sieve;
    }
    if N > 0 {
        sieve[0] = false;
    }
    if N > 1 {
        sieve[1] = false;
    }

    let mut number: usize = 2;
    let bound = isqrt(N as u64);
    // For all numbers up to and including sqrt(n):
    while (number as u64) <= bound {
        if sieve[number] {
            // If a number is prime we enumerate all multiples of it
            // starting from its square,
            let Some(mut composite) = number.checked_mul(number) else {
                break;
            };

            // and mark them as not prime.
            while composite < N {
                sieve[composite] = false;
                composite = match composite.checked_add(number) {
                    Some(sum) => sum,
                    None => break,
                };
            }
        }
        number += 1;
    }

    sieve
}

/// The error returned by [`sieve_lt`] and [`sieve_geq`] if the input
/// is invalid or does not work to sieve the requested range.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
)]
pub enum SieveError {
    /// The limit was less than or equal to `N` (for `sieve_lt`).
    TooSmallLimit,
    /// `MEM`^2 was smaller than the largest encountered value.
    TooSmallSieveSize,
    /// `limit + MEM` did not fit in a `u64`.
    TotalDoesntFitU64,
}

impl fmt::Display for SieveError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::TooSmallLimit => write!(f, "`limit` must be at least `N`"),
            Self::TooSmallSieveSize => {
                write!(f, "`MEM`^2 was smaller than the largest encountered value")
            }
            Self::TotalDoesntFitU64 => write!(f, "`MEM + limit` must fit in a `u64`"),
        }
    }
}

impl core::error::Error for SieveError {}

/// Returns an array of size `N` that indicates which of the `N` smallest integers greater than or equal to `lower_limit` are prime.
///
/// Uses a sieve of size `MEM` during evaluation, but stores only the requested values in the output array.
/// `MEM` must be large enough for the sieve to be able to determine the prime status of all numbers in the requested range,
/// that is `MEM`^2 must be larger than `lower_limit + N`.
///
/// If you just want the prime status of the first N integers, see [`sieve`], and if you want the
/// prime status of the integers below some number, see [`sieve_lt`].
///
/// If you do not wish to compute the size requirement of the sieve manually, take a look at [`sieve_segment!`](crate::sieve_segment).
///
/// # Examples
///
/// The size of the sieve, `MEM`, must be large enough for the largest sieved number to be smaller than `MEM`^2:
///
/// ```
/// # use const_primes::sieve_geq;
/// // The three numbers larger than or equal to 9 are 9, 10 and 11.
/// const N: usize = 3;
/// const LIMIT: u64 = 9;
/// // We thus need a memory size of at least 4, since 3*3 < 11, and therefore isn't enough.
/// const MEM: usize = 4;
/// const PRIME_STATUS: [bool; N] = match sieve_geq::<N, MEM>(LIMIT) {Ok(s) => s, Err(_) => panic!()};
/// //                        9,     10,    11
/// assert_eq!(PRIME_STATUS, [false, false, true]);
/// ```
///
/// Sieve limited ranges of large values. Functions provided by the crate can help you
/// compute the needed sieve size:
///
/// ```
/// # use const_primes::{sieve_geq, SieveError};
/// use const_primes::isqrt;
/// const N: usize = 3;
/// const LIMIT: u64 = 5_000_000_038;
/// const MEM: usize = isqrt(LIMIT) as usize + 1 + N;
/// const BIG_PRIME_STATUS: Result<[bool; N], SieveError> = sieve_geq::<N, MEM>(LIMIT);
/// //                               5_000_000_038  5_000_000_039  5_000_000_040
/// assert_eq!(BIG_PRIME_STATUS, Ok([false,         true,          false]));
/// ```
///
/// # Errors
///
/// Returns an error if `MEM + lower_limit` is larger than `MEM^2` or doesn't fit in a `u64`:
///
/// ```
/// # use const_primes::{sieve_geq, SieveError};
/// const P1: Result<[bool; 5], SieveError> = sieve_geq::<5, 5>(21);
/// const P2: Result<[bool; 5], SieveError> = sieve_geq::<5, 5>(u64::MAX);
/// assert_eq!(P1, Err(SieveError::TooSmallSieveSize));
/// assert_eq!(P2, Err(SieveError::TotalDoesntFitU64));
/// ```
///
/// It is a compile error if `MEM` is smaller than `N`, or if `MEM`^2 does not fit in a `u64`:
///
/// ```compile_fail
/// # use const_primes::{sieve_geq, SieveError};
/// const TOO_SMALL_MEM: Result<[bool; 5], SieveError> = sieve_geq::<5, 2>(100);
/// ```
///
/// ```compile_fail
/// # use const_primes::{sieve_geq, SieveError};
/// const TOO_LARGE_MEM: Result<[bool; 5], SieveError> = sieve_geq::<5, 1_000_000_000_000>(100);
/// ```
#[must_use = "the function only returns a new value and does not modify its input"]
pub const fn sieve_geq<const N: usize, const MEM: usize>(
    lower_limit: u64,
) -> Result<[bool; N], SieveError> {
    const { assert!(MEM >= N, "`MEM` must be at least as large as `N`") }

    let (mem64, mem_sqr) = const {
        let mem64 = MEM as u64;
        match mem64.checked_mul(mem64) {
            Some(mem_sqr) => (mem64, mem_sqr),
            None => panic!("`MEM`^2 must fit in a `u64`"),
        }
    };

    let Some(upper_limit) = mem64.checked_add(lower_limit) else {
        return Err(SieveError::TotalDoesntFitU64);
    };

    if upper_limit > mem_sqr {
        return Err(SieveError::TooSmallSieveSize);
    }

    if N == 0 {
        return Ok([false; N]);
    }

    // If `lower_limit` is zero then this is the same as just calling `sieve`, and we can return early.
    if lower_limit == 0 {
        // We do not merge it with the computation of `base_sieve` below, since here we only
        // compute `N` values instead of `MEM`.
        return Ok(sieve());
    }

    let base_sieve: [bool; MEM] = sieve();

    let upper_sieve = match sieve_segment(&base_sieve, upper_limit) {
        Ok(res) => res,
        Err(_) => panic!("this is already checked above"),
    };

    let mut ans = [false; N];
    let mut i = 0;
    while i < N {
        ans[i] = upper_sieve[i];
        i += 1;
    }
    Ok(ans)
}

/// Generate arrays of the prime status of large numbers without having to store the prime status
/// of every single integer smaller than the target in the result, and thus potentially the binary.
///
/// Calls [`sieve_geq`] or [`sieve_lt`], and automatically computes the memory requirement of the sieve.
///
/// Sieve the `N` smallest numbers larger than or equal to some limit as `sieve_segment!(N; >= LIMIT)`,
/// and the `N` largest numbers smaller than some limit as `sieve_segment!(N; < LIMIT)`.
///
/// Computes the sieve size as `isqrt(upper_limit) + 1` for [`sieve_lt`]
/// and as `isqrt(lower_limit) + 1 + N` for [`sieve_geq`].
/// This may overestimate the memory requirement for `sieve_geq`.
///
/// # Examples
///
/// ```
/// # use const_primes::{sieve_segment, SieveError};
/// const PRIME_STATUS_LT: Result<[bool; 5], SieveError> = sieve_segment!(5; < 100_005);
/// const PRIME_STATUS_GEQ: Result<[bool; 7], SieveError> = sieve_segment!(7; >= 615);
/// assert_eq!(
///     PRIME_STATUS_LT,
/// //      100_000  100_101  100_102  100_103  100_104
///     Ok([false,   false,   false,   true,    false])
/// );
/// assert_eq!(
///     PRIME_STATUS_GEQ,
/// //      615    616    617   618    619   620    621
///     Ok([false, false, true, false, true, false, false])
/// );
/// ```
///
/// # Errors
///
/// Has the same error behaviour as [`sieve_geq`] and [`sieve_lt`], with the exception
/// that it sets `MEM` such that the sieve doesn't run out of memory.
#[macro_export]
macro_rules! sieve_segment {
    ($n:expr; < $lim:expr) => {
        $crate::sieve_lt::<
            { $n },
            {
                let mem: u64 = { $lim };
                $crate::isqrt(mem) as ::core::primitive::usize + 1
            },
        >({ $lim })
    };
    ($n:expr; >= $lim:expr) => {
        $crate::sieve_geq::<
            { $n },
            {
                let mem: u64 = { $lim };
                $crate::isqrt(mem) as ::core::primitive::usize + 1 + { $n }
            },
        >({ $lim })
    };
}

#[cfg(test)]
mod test {
    use crate::SieveError;

    use super::{sieve, sieve_geq, sieve_lt, sieve_segment, SegmentedSieveError};

    #[test]
    fn test_consistency_of_sieve_segment() {
        const P: [bool; 10] = match sieve_segment(&sieve(), 10) {
            Ok(s) => s,
            Err(_) => panic!(),
        };
        const PP: [bool; 10] = match sieve_segment(&sieve(), 11) {
            Ok(s) => s,
            Err(_) => panic!(),
        };
        assert_eq!(P, sieve());
        assert_eq!(PP, sieve::<11>()[1..]);
        assert_eq!(
            sieve_segment::<5>(&[false, false, true, true, false], 4),
            Err(SegmentedSieveError)
        );
        assert_eq!(sieve_segment(&sieve::<5>(), 5), Ok(sieve()));
    }

    #[test]
    fn test_sieve_lt() {
        assert_eq!(sieve_lt::<5, 5>(30), Err(SieveError::TooSmallSieveSize));
        assert_eq!(sieve_lt::<5, 5>(4), Err(SieveError::TooSmallLimit));
        assert_eq!(sieve_lt::<5, 5>(5), Ok(sieve()));
        assert_eq!(sieve_lt::<2, 5>(20), Ok([false, true]));
    }

    #[test]
    fn test_sieve() {
        assert_eq!(sieve(), [false; 0]);
    }

    #[test]
    fn test_sieve_geq() {
        assert_eq!(
            sieve_geq::<5, 5>(u64::MAX),
            Err(SieveError::TotalDoesntFitU64)
        );
        assert_eq!(sieve_geq::<5, 5>(30), Err(SieveError::TooSmallSieveSize));
        assert_eq!(sieve_geq::<0, 1>(0), Ok([false; 0]))
    }
}