const_primes/generate.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
//! This module contains implementations of prime generation functions.
use core::fmt;
use crate::{sieve, sieve::sieve_segment, Underlying};
/// Returns the `N` first prime numbers.
///
/// [`Primes`](crate::Primes) might be relevant for you if you intend to later use these prime numbers for related computations.
///
/// Uses a [segmented sieve of Eratosthenes](https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes#Segmented_sieve).
///
/// # Example
///
/// ```
/// # use const_primes::primes;
/// const PRIMES: [u32; 10] = primes();
/// assert_eq!(PRIMES, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]);
/// ```
#[must_use = "the function only returns a new value"]
pub const fn primes<const N: usize>() -> [Underlying; N] {
if N <= 1 {
return [2; N];
} else if N == 2 {
let mut primes = [0; N];
primes[0] = 2;
primes[1] = 3;
return primes;
}
// This is a segmented sieve that runs until it has found enough primes.
// This array is the output in the end
let mut primes = [0; N];
// This keeps track of how many primes we've found so far.
let mut prime_count = 0;
// Sieve the first primes below N
let mut sieve: [bool; N] = sieve();
// Count how many primes we found
// and store them in the final array
let mut number = 0;
while number < N {
if sieve[number] {
primes[prime_count] = number as Underlying;
prime_count += 1;
}
number += 1;
}
// For every segment of N numbers
let mut low = N - 1;
let mut high = 2 * N - 1;
'generate: while prime_count < N {
// reset the sieve for the segment
sieve = [true; N];
let mut i = 0;
// and repeat for each prime found so far:
while i < prime_count {
let prime = primes[i] as usize;
// Find the smallest composite in the current segment,
let mut composite = (low / prime) * prime;
if composite < low {
composite += prime;
}
// and sieve all numbers in the segment that are multiples of the prime.
while composite < high {
sieve[composite - low] = false;
composite += prime;
}
i += 1;
}
// Move the found primes into the final array
i = low;
while i < high {
if sieve[i - low] {
primes[prime_count] = i as Underlying;
prime_count += 1;
// and stop the generation of primes if we're done.
if prime_count >= N {
break 'generate;
}
}
i += 1;
}
// Update low and high for the next segment
low += N;
high += N;
}
primes
}
/// Returns the `N` largest primes less than `upper_limit`.
///
/// This function uses a segmented sieve of size `MEM` for computation,
/// but only stores the `N` requested primes in the output array.
///
/// Set `MEM` such that `MEM*MEM >= upper_limit`.
///
/// If you want to compute primes that are larger than some limit, take a look at [`primes_geq`].
///
/// If you do not wish to compute the size requirement of the sieve manually, take a look at [`primes_segment!`](crate::primes_segment).
///
/// # Example
///
/// Basic usage:
///
/// ```
/// # use const_primes::{primes_lt, GenerationError};
/// // Sieving up to 100 means the sieve needs to be of size ceil(sqrt(100)) = 10.
/// // However, we only save the 4 largest primes in the constant.
/// const PRIMES: [u64;4] = match primes_lt::<4, 10>(100) {Ok(ps) => ps, Err(_) => panic!()};
/// assert_eq!(PRIMES, [79, 83, 89, 97]);
/// ```
///
/// Compute limited ranges of large primes. Functions provided by the crate can help you
/// compute the needed sieve size:
///
/// ```
/// # use const_primes::{primes_lt, GenerationError};
/// use const_primes::isqrt;
/// const N: usize = 3;
/// const LIMIT: u64 = 5_000_000_030;
/// const MEM: usize = isqrt(LIMIT) as usize + 1;
/// const BIG_PRIMES: Result<[u64; N], GenerationError> = primes_lt::<N, MEM>(LIMIT);
///
/// assert_eq!(BIG_PRIMES, Ok([4_999_999_903, 4_999_999_937, 5_000_000_029]));
/// ```
///
/// # Errors
///
/// If the number of primes requested, `N`, is larger than
/// the number of primes that exists below the `upper_limit` this function
/// returns an error:
///
/// ```
/// # use const_primes::{primes_lt, GenerationError};
/// const N: usize = 9;
/// const PRIMES: Result<[u64; N], GenerationError> = primes_lt::<N, N>(10);
/// assert_eq!(PRIMES, Err(GenerationError::OutOfPrimes));
/// ```
///
/// It also returns an error if `upper_limit` is larger than `MEM`^2 or if `upper_limit` is smaller than or equal to 2:
///
/// ```
/// # use const_primes::{primes_lt, GenerationError};
/// const TOO_LARGE_LIMIT: Result<[u64; 3], GenerationError> = primes_lt::<3, 5>(26);
/// const TOO_SMALL_LIMIT: Result<[u64; 1], GenerationError> = primes_lt::<1, 1>(1);
/// assert_eq!(TOO_LARGE_LIMIT, Err(GenerationError::TooSmallSieveSize));
/// assert_eq!(TOO_SMALL_LIMIT, Err(GenerationError::TooSmallLimit));
/// ```
///
/// It is a compile error if `MEM` is smaller than `N`, or if `MEM`^2 does not fit in a `u64`:
///
/// ```compile_fail
/// # use const_primes::{primes_lt, GenerationError};
/// const TOO_SMALL_MEM: Result<[u64; 5], GenerationError> = primes_lt::<5, 2>(20);
/// ```
///
/// ```compile_fail
/// # use const_primes::{primes_lt, GenerationError};
/// const TOO_BIG_MEM: Result<[u64; 10], GenerationError> = primes_lt::<10, 1_000_000_000_000>(100);
/// ```
#[must_use = "the function only returns a new value and does not modify its input"]
pub const fn primes_lt<const N: usize, const MEM: usize>(
mut upper_limit: u64,
) -> Result<[u64; N], GenerationError> {
const { assert!(MEM >= N, "`MEM` must be at least as large as `N`") }
let mem_sqr = const {
let mem64 = MEM as u64;
match mem64.checked_mul(mem64) {
Some(mem_sqr) => mem_sqr,
None => panic!("`MEM`^2 must fit in a u64"),
}
};
if upper_limit <= 2 {
return Err(GenerationError::TooSmallLimit);
}
if upper_limit > mem_sqr {
return Err(GenerationError::TooSmallSieveSize);
}
let mut primes: [u64; N] = [0; N];
if N == 0 {
return Ok(primes);
}
// This will be used to sieve all upper ranges.
let base_sieve: [bool; MEM] = sieve();
let mut total_primes_found: usize = 0;
'generate: while total_primes_found < N {
// This is the smallest prime we have found so far.
let mut smallest_found_prime = primes[N - 1 - total_primes_found];
// Sieve for primes in the segment.
let (offset, upper_sieve) = match sieve_segment(&base_sieve, upper_limit) {
Ok(res) => (0, res),
// The segment was larger than there are numbers left to sieve, just use the base sieve
Err(_) => ((MEM as u64 - upper_limit) as usize, base_sieve),
};
let mut i: usize = 0;
while i < MEM - offset {
// Iterate backwards through the upper sieve.
if upper_sieve[MEM - 1 - i - offset] {
smallest_found_prime = upper_limit - 1 - i as u64;
// Write every found prime to the primes array.
primes[N - 1 - total_primes_found] = smallest_found_prime;
total_primes_found += 1;
if total_primes_found >= N {
// If we have found enough primes we stop sieving.
break 'generate;
}
}
i += 1;
}
upper_limit = smallest_found_prime;
if upper_limit <= 2 && total_primes_found < N {
return Err(GenerationError::OutOfPrimes);
}
}
Ok(primes)
}
/// Generate arrays of large prime numbers without having to store all primes
/// from 2 and up in the result, and thus potentially the binary.
///
/// Calls [`primes_geq`] or [`primes_lt`], and automatically computes the memory requirement of the sieve.
///
/// Compute `N` primes larger than or equal to some limit as `primes_segment!(N; >= LIMIT)`,
/// and `N` primes less than some limit as `primes_segment!(N; < LIMIT)`.
///
/// Estimates the sieve size as `isqrt(upper_limit) + 1` for [`primes_lt`]
/// and as `isqrt(lower_limit) + 1 + N` for [`primes_geq`].
/// This may overestimate the memory requirement for `primes_geq`.
///
/// # Example
///
/// ```
/// # use const_primes::{primes_segment, GenerationError};
/// const N: usize = 3;
/// const LIMIT: u64 = 5_000_000_031;
///
/// const PRIMES_GEQ: Result<[u64; N], GenerationError> = primes_segment!(N; >= LIMIT);
/// const PRIMES_LT: Result<[u64; N], GenerationError> = primes_segment!(N; < LIMIT);
///
/// // Can also be used at runtime:
/// let primes_geq = primes_segment!(N; >= LIMIT);
///
/// assert_eq!(PRIMES_GEQ, primes_geq);
/// assert_eq!(PRIMES_GEQ, Ok([5000000039, 5000000059, 5000000063]));
/// assert_eq!(PRIMES_LT, Ok([4999999903, 4999999937, 5000000029]));
/// ```
///
/// # Errors
///
/// Has the same error behaviour as [`primes_geq`] and [`primes_lt`], with the exception
/// that it sets `MEM` such that the sieve doesn't run out of memory.
#[macro_export]
macro_rules! primes_segment {
($n:expr; < $lim:expr) => {
$crate::primes_lt::<
{ $n },
{
let mem: u64 = { $lim };
$crate::isqrt(mem) as ::core::primitive::usize + 1
},
>({ $lim })
};
($n:expr; >= $lim:expr) => {
$crate::primes_geq::<
{ $n },
{
let mem: u64 = { $lim };
$crate::isqrt(mem) as ::core::primitive::usize + 1 + { $n }
},
>({ $lim })
};
}
/// Returns the `N` smallest primes greater than or equal to `lower_limit`.
///
/// This function uses a segmented sieve of size `MEM` for computation,
/// but only stores the `N` requested primes in the output array.
///
/// Set `MEM` such that `MEM`^2 is larger than the largest prime you will encounter.
///
/// If you want to compute primes smaller than some limit, take a look at [`primes_lt`].
///
/// If you do not wish to compute the size requirement of the sieve manually, take a look at [`primes_segment!`](crate::primes_segment).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use const_primes::primes_geq;
/// // Compute 5 primes larger than 40. The largest will be 59, so `MEM` needs to be at least 8.
/// const PRIMES: [u64; 5] = match primes_geq::<5, 8>(40) {Ok(ps) => ps, Err(_) => panic!()};
/// assert_eq!(PRIMES, [41, 43, 47, 53, 59]);
/// ```
///
/// Compute limited ranges of large primes. Functions provided by the crate can help you
/// compute the needed sieve size:
///
/// ```
/// # use const_primes::{primes_geq, GenerationError};
/// use const_primes::isqrt;
/// const N: usize = 3;
/// const LIMIT: u64 = 5_000_000_030;
/// const MEM: usize = isqrt(LIMIT) as usize + 1 + N;
/// const PRIMES_GEQ: Result<[u64; N], GenerationError> = primes_geq::<N, MEM>(LIMIT);
/// assert_eq!(PRIMES_GEQ, Ok([5_000_000_039, 5_000_000_059, 5_000_000_063]));
/// # Ok::<(), GenerationError>(())
/// ```
///
/// # Errors
///
/// Only primes smaller than `MEM^2` can be generated, so if the sieve
/// encounters a number larger than that it results in an error:
///
/// ```
/// # use const_primes::{primes_geq, GenerationError};
/// const PRIMES: Result<[u64; 3], GenerationError> = primes_geq::<3, 3>(5);
/// // The sieve is unable to determine the prime status of 9,
/// // since that is the same or larger than `MEM`^2.
/// assert_eq!(PRIMES, Err(GenerationError::SieveOverrun(9)));
/// ```
///
/// Also returns an error if `lower_limit` is larger than or equal to `MEM^2`:
///
/// ```
/// # use const_primes::{primes_geq, GenerationError};
/// const PRIMES: Result<[u64; 5], GenerationError> = primes_geq::<5, 5>(26);
/// assert_eq!(PRIMES, Err(GenerationError::TooSmallSieveSize));
/// ```
///
/// It is a compile error if `MEM` is smaller than `N`, or if `MEM`^2 does not fit in a `u64`:
///
/// ```compile_fail
/// # use const_primes::{primes_geq, GenerationError};
/// const TOO_SMALL_MEM: Result<[u64; 5], GenerationError> = primes_geq::<5, 2>(20);
/// ```
///
/// ```compile_fail
/// # use const_primes::{primes_geq, GenerationError};
/// const TOO_BIG_MEM: Result<[u64; 10], GenerationError> = primes_geq::<10, 1_000_000_000_000>(100);
/// ```
#[must_use = "the function only returns a new value and does not modify its input"]
pub const fn primes_geq<const N: usize, const MEM: usize>(
lower_limit: u64,
) -> Result<[u64; N], GenerationError> {
const { assert!(MEM >= N, "`MEM` must be at least as large as `N`") }
let (mem64, mem_sqr) = const {
let mem64 = MEM as u64;
match mem64.checked_mul(mem64) {
Some(mem_sqr) => (mem64, mem_sqr),
None => panic!("`MEM`^2 must fit in a `u64`"),
}
};
if N == 0 {
return Ok([0; N]);
}
// If `lower_limit` is 2 or less, this is the same as calling `primes`,
// so we just do that and convert the result to `u64`.
if lower_limit <= 2 {
let ans32: [u32; N] = primes();
let mut ans64 = [0; N];
let mut i = 0;
while i < N {
ans64[i] = ans32[i] as u64;
i += 1;
}
return Ok(ans64);
}
if lower_limit >= mem_sqr {
return Err(GenerationError::TooSmallSieveSize);
}
let mut primes = [0; N];
let mut total_found_primes = 0;
let mut largest_found_prime = 0;
let base_sieve: [bool; MEM] = sieve();
let mut sieve_limit = lower_limit;
'generate: while total_found_primes < N {
let upper_sieve = match sieve_segment(&base_sieve, sieve_limit + mem64) {
Ok(res) => res,
Err(_) => panic!("can not happen since we set upper limit to mem + nonzero stuff"),
};
let mut i = 0;
while i < MEM {
if upper_sieve[i] {
largest_found_prime = sieve_limit + i as u64;
// We can not know whether this is actually a prime since
// the base sieve contains no information
// about numbers larger than or equal to `MEM`^2.
if largest_found_prime >= mem_sqr {
return Err(GenerationError::SieveOverrun(largest_found_prime));
}
if largest_found_prime >= lower_limit {
primes[total_found_primes] = largest_found_prime;
total_found_primes += 1;
if total_found_primes >= N {
// We've found enough primes.
break 'generate;
}
}
}
i += 1;
}
sieve_limit = largest_found_prime + 1;
}
Ok(primes)
}
/// The error returned by [`primes_lt`] and [`primes_geq`] if the input
/// is invalid or does not work to produce the requested primes.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
)]
pub enum GenerationError {
/// The limit was larger than or equal to `MEM^2`.
TooSmallSieveSize,
/// The limit was smaller than or equal to 2.
TooSmallLimit,
/// Encountered a number larger than or equal to `MEM`^2.
SieveOverrun(u64),
/// Ran out of primes.
OutOfPrimes,
}
impl fmt::Display for GenerationError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::TooSmallSieveSize => write!(
f,
"the limit was larger than `MEM`^2"
),
Self::TooSmallLimit => write!(
f,
"the limit was smaller than or equal to 2"
),
Self::SieveOverrun(number) => write!(
f,
"encountered the number {number} which would have needed `MEM` to be at least {} to sieve", crate::integer_math::isqrt(*number) + 1
),
Self::OutOfPrimes => write!(f, "ran out of primes before the array was filled"),
}
}
}
impl core::error::Error for GenerationError {}
#[cfg(test)]
mod test {
use crate::is_prime;
use super::*;
#[test]
fn sanity_check_primes_geq() {
{
const P: Result<[u64; 5], GenerationError> = primes_geq::<5, 5>(10);
assert_eq!(P, Ok([11, 13, 17, 19, 23]));
}
{
const P: Result<[u64; 5], GenerationError> = primes_geq::<5, 5>(0);
assert_eq!(P, Ok([2, 3, 5, 7, 11]));
}
{
const P: Result<[u64; 1], GenerationError> = primes_geq::<1, 1>(0);
assert_eq!(P, Ok([2]));
}
for &prime in primes_geq::<2_000, 2_008>(3_998_000).unwrap().as_slice() {
assert!(is_prime(prime));
}
assert_eq!(primes_geq::<0, 0>(10), Ok([]));
assert_eq!(primes_geq::<3, 3>(2), Ok([2, 3, 5]));
assert_eq!(
primes_geq::<3, 3>(10),
Err(GenerationError::TooSmallSieveSize)
);
assert_eq!(primes_geq::<2, 2>(3), Err(GenerationError::SieveOverrun(4)));
}
#[test]
fn sanity_check_primes_lt() {
{
const P: Result<[u64; 5], GenerationError> = primes_lt::<5, 5>(20);
assert_eq!(P, Ok([7, 11, 13, 17, 19]));
}
{
const P: Result<[u64; 5], GenerationError> = primes_lt::<5, 5>(12);
assert_eq!(P, Ok([2, 3, 5, 7, 11]));
}
{
const P: Result<[u64; 1], GenerationError> = primes_lt::<1, 2>(3);
assert_eq!(P, Ok([2]));
}
assert_eq!(primes_lt::<2, 2>(2), Err(GenerationError::TooSmallLimit));
assert_eq!(
primes_lt::<2, 2>(5),
Err(GenerationError::TooSmallSieveSize)
);
assert_eq!(primes_lt::<0, 2>(3), Ok([]));
assert_eq!(primes_lt::<3, 5>(4), Err(GenerationError::OutOfPrimes));
}
#[test]
fn check_primes_segment() {
const P_GEQ: Result<[u64; 10], GenerationError> = primes_segment!(10; >= 1000);
const P_LT: Result<[u64; 10], GenerationError> = primes_segment!(10; < 1000);
assert_eq!(
P_GEQ,
Ok([1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061])
);
assert_eq!(P_LT, Ok([937, 941, 947, 953, 967, 971, 977, 983, 991, 997]));
}
}