const_primes/search.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
//! This module contains implementations of functions that search for primes that neighbour a given number.
use crate::is_prime;
/// Generalised function for nearest search by incrementing/decrementing by 1
/// Any attempt at optimising this would be largely pointless since the largest prime gap under 2^64 is only 1550
/// And is_prime's trial division already eliminates most of those
const fn bounded_search(mut n: u64, stride: u64) -> Option<u64> {
debug_assert!(stride == 1 || stride == u64::MAX);
loop {
// Addition over Z/2^64, aka regular addition under optimisation flags
n = n.wrapping_add(stride);
// If either condition is met then we started either below or above the smallest or largest prime respectively
// Any two values from 2^64-58 to 1 would also work
if n == 0u64 || n == u64::MAX {
return None;
}
if is_prime(n) {
return Some(n);
}
}
}
/// Returns the largest prime smaller than `n` if there is one.
///
/// Scans for primes downwards from the input with [`is_prime`].
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use const_primes::previous_prime;
/// const PREV: Option<u64> = previous_prime(400);
/// assert_eq!(PREV, Some(397));
/// ```
///
/// There's no prime smaller than two:
///
/// ```
/// # use const_primes::previous_prime;
/// const NO_SUCH: Option<u64> = previous_prime(2);
/// assert_eq!(NO_SUCH, None);
/// ```
#[must_use = "the function only returns a new value and does not modify its input"]
pub const fn previous_prime(n: u64) -> Option<u64> {
// Adding by 2^64-1 over Z/2^64 is equivalent to subtracting by 1
bounded_search(n, u64::MAX)
}
/// Returns the smallest prime greater than `n` if there is one that
/// can be represented by a `u64`.
///
/// Scans for primes upwards from the input with [`is_prime`].
///
/// # Example
///
/// Basic usage:
///
/// ```
/// # use const_primes::next_prime;
/// const NEXT: Option<u64> = next_prime(400);
/// assert_eq!(NEXT, Some(401));
/// ```
///
/// Primes larger than 18446744073709551557 can not be represented by a `u64`:
///
/// ```
/// # use const_primes::next_prime;
/// const NO_SUCH: Option<u64> = next_prime(18_446_744_073_709_551_557);
/// assert_eq!(NO_SUCH, None);
/// ```
#[must_use = "the function only returns a new value and does not modify its input"]
pub const fn next_prime(n: u64) -> Option<u64> {
bounded_search(n, 1)
}