const_primes/search.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
//! This module contains implementations of functions that search for primes that neighbour a given number.
use crate::is_prime;
/// Returns the largest prime smaller than `n` if there is one.
///
/// Scans for primes downwards from the input with [`is_prime`].
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use const_primes::previous_prime;
/// const PREV: Option<u64> = previous_prime(400);
/// assert_eq!(PREV, Some(397));
/// ```
///
/// There's no prime smaller than two:
/// ```
///
/// # use const_primes::previous_prime;
/// const NO_SUCH: Option<u64> = previous_prime(2);
/// assert_eq!(NO_SUCH, None);
/// ```
#[must_use = "the function only returns a new value and does not modify its input"]
pub const fn previous_prime(mut n: u64) -> Option<u64> {
if n <= 2 {
None
} else if n == 3 {
Some(2)
} else {
n -= 1;
if n % 2 == 0 {
n -= 1;
}
while !is_prime(n) {
n -= 2;
}
Some(n)
}
}
/// Returns the smallest prime greater than `n` if there is one that
/// can be represented by a `u64`.
///
/// Scans for primes upwards from the input with [`is_prime`].
///
/// # Example
///
/// Basic usage:
///
/// ```
/// # use const_primes::next_prime;
/// const NEXT: Option<u64> = next_prime(400);
/// assert_eq!(NEXT, Some(401));
/// ```
///
/// Primes larger than 18446744073709551557 can not be represented by a `u64`:
/// ```
///
/// # use const_primes::next_prime;
/// const NO_SUCH: Option<u64> = next_prime(18_446_744_073_709_551_557);
/// assert_eq!(NO_SUCH, None);
/// ```
#[must_use = "the function only returns a new value and does not modify its input"]
pub const fn next_prime(mut n: u64) -> Option<u64> {
// The largest prime smaller than u64::MAX
if n >= 18_446_744_073_709_551_557 {
None
} else if n <= 1 {
Some(2)
} else {
n += 1;
if n % 2 == 0 {
n += 1;
}
while !is_prime(n) {
n += 2;
}
Some(n)
}
}