corosensei/
coroutine.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
use core::cell::Cell;
use core::hint::unreachable_unchecked;
use core::marker::PhantomData;
use core::mem::{self, ManuallyDrop};
use core::ptr;

use crate::arch::{self, STACK_ALIGNMENT};
#[cfg(feature = "default-stack")]
use crate::stack::DefaultStack;
#[cfg(windows)]
use crate::stack::StackTebFields;
use crate::stack::{self, StackPointer};
use crate::trap::CoroutineTrapHandler;
use crate::unwind::{self, initial_func_abi, CaughtPanic, ForcedUnwindErr};
use crate::util::{self, EncodedValue};

/// Value returned from resuming a coroutine.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum CoroutineResult<Yield, Return> {
    /// Value returned by a coroutine suspending itself with a `Yielder`.
    Yield(Yield),

    /// Value returned by a coroutine returning from its main function.
    Return(Return),
}

impl<Yield, Return> CoroutineResult<Yield, Return> {
    /// Returns the `Yield` value as an `Option<Yield>`.
    pub fn as_yield(self) -> Option<Yield> {
        match self {
            CoroutineResult::Yield(val) => Some(val),
            CoroutineResult::Return(_) => None,
        }
    }

    /// Returns the `Return` value as an `Option<Return>`.
    pub fn as_return(self) -> Option<Return> {
        match self {
            CoroutineResult::Yield(_) => None,
            CoroutineResult::Return(val) => Some(val),
        }
    }
}

/// A coroutine wraps a closure and allows suspending its execution more than
/// once, returning a value each time.
///
/// # Dropping a coroutine
///
/// When a coroutine is dropped, its stack must be unwound so that all object on
/// it are properly dropped. This is done by calling `force_unwind` to unwind
/// the stack. If `force_unwind` fails then the program is aborted.
///
/// See the [`Coroutine::force_unwind`] function for more details.
///
/// # `Send`
///
/// In the general case, a coroutine can only be sent to another if all of the
/// data on its stack is `Send`. There is no way to guarantee this using Rust
/// language features so `Coroutine` does not implement the `Send` trait.
///
/// However if all of the code executed by a coroutine is under your control and
/// you can ensure that all types on the stack when a coroutine is suspended
/// are `Send` then it is safe to manually implement `Send` for a coroutine.
#[cfg(feature = "default-stack")]
pub struct Coroutine<Input, Yield, Return, Stack: stack::Stack = DefaultStack> {
    // Stack that the coroutine is executing on.
    stack: Stack,

    // Current stack pointer at which the coroutine state is held. This is
    // None when the coroutine has completed execution.
    stack_ptr: Option<StackPointer>,

    // Initial stack pointer value. This is used to detect whether a coroutine
    // has ever been resumed since it was created.
    //
    // This works because it is impossible for a coroutine to revert back to its
    // initial stack pointer: suspending a coroutine requires pushing several
    // values to the stack.
    initial_stack_ptr: StackPointer,

    // Function to call to drop the initial state of a coroutine if it has
    // never been resumed.
    drop_fn: unsafe fn(ptr: *mut u8),

    // We want to be covariant over Yield and Return, and contravariant
    // over Input.
    //
    // Effectively this means that we can pass a
    //   Coroutine<&'a (), &'static (), &'static ()>
    // to a function that expects a
    //   Coroutine<&'static (), &'c (), &'d ()>
    marker: PhantomData<fn(Input) -> CoroutineResult<Yield, Return>>,

    // Coroutine must be !Send.
    /// ```compile_fail
    /// fn send<T: Send>() {}
    /// send::<corosensei::Coroutine<(), ()>>();
    /// ```
    marker2: PhantomData<*mut ()>,
}

/// A coroutine wraps a closure and allows suspending its execution more than
/// once, returning a value each time.
///
/// # Dropping a coroutine
///
/// When a coroutine is dropped, its stack must be unwound so that all object on
/// it are properly dropped. This is done by calling `force_unwind` to unwind
/// the stack. If `force_unwind` fails then the program is aborted.
///
/// See the [`Coroutine::force_unwind`] function for more details.
///
/// # `Send`
///
/// In the general case, a coroutine can only be sent to another if all of the
/// data on its stack is `Send`. There is no way to guarantee this using Rust
/// language features so `Coroutine` does not implement the `Send` trait.
///
/// However if all of the code executed by a coroutine is under your control and
/// you can ensure that all types on the stack when a coroutine is suspended
/// are `Send` then it is safe to manually implement `Send` for a coroutine.
#[cfg(not(feature = "default-stack"))]
pub struct Coroutine<Input, Yield, Return, Stack: stack::Stack> {
    stack: Stack,
    stack_ptr: Option<StackPointer>,
    initial_stack_ptr: StackPointer,
    drop_fn: unsafe fn(ptr: *mut u8),
    marker: PhantomData<fn(Input) -> CoroutineResult<Yield, Return>>,
    marker2: PhantomData<*mut ()>,
}

// Coroutines can be Sync if the stack is Sync.
unsafe impl<Input, Yield, Return, Stack: stack::Stack + Sync> Sync
    for Coroutine<Input, Yield, Return, Stack>
{
}

#[cfg(feature = "default-stack")]
impl<Input, Yield, Return> Coroutine<Input, Yield, Return, DefaultStack> {
    /// Creates a new coroutine which will execute `func` on a new stack.
    ///
    /// This function returns a `Coroutine` which, when resumed, will execute
    /// `func` to completion. When desired the `func` can suspend itself via
    /// `Yielder::suspend`.
    pub fn new<F>(f: F) -> Self
    where
        F: FnOnce(&Yielder<Input, Yield>, Input) -> Return,
        F: 'static,
        Input: 'static,
        Yield: 'static,
        Return: 'static,
    {
        Self::with_stack(Default::default(), f)
    }
}

impl<Input, Yield, Return, Stack: stack::Stack> Coroutine<Input, Yield, Return, Stack> {
    /// Creates a new coroutine which will execute `func` on the given stack.
    ///
    /// This function returns a coroutine which, when resumed, will execute
    /// `func` to completion. When desired the `func` can suspend itself via
    /// [`Yielder::suspend`].
    pub fn with_stack<F>(stack: Stack, f: F) -> Self
    where
        F: FnOnce(&Yielder<Input, Yield>, Input) -> Return,
        F: 'static,
        Input: 'static,
        Yield: 'static,
        Return: 'static,
    {
        // The ABI of the initial function is either "C" or "C-unwind" depending
        // on whether the "asm-unwind" feature is enabled.
        initial_func_abi! {
            unsafe fn coroutine_func<Input, Yield, Return, F>(
                input: EncodedValue,
                parent_link: &mut StackPointer,
                func: *mut F,
            ) -> !
            where
                F: FnOnce(&Yielder<Input, Yield>, Input) -> Return,
            {
                // The yielder is a #[repr(transparent)] wrapper around the
                // parent link on the stack.
                let yielder = &*(parent_link as *mut StackPointer as *const Yielder<Input, Yield>);

                // Read the function from the stack.
                debug_assert_eq!(func as usize % mem::align_of::<F>(), 0);
                let f = func.read();

                // This is the input from the first call to resume(). It is not
                // possible for a forced unwind to reach this point because we
                // check if a coroutine has been resumed at least once before
                // generating a forced unwind.
                let input : Result<Input, ForcedUnwindErr> = util::decode_val(input);
                let input = match input {
                    Ok(input) => input,
                    #[cfg_attr(feature = "asm-unwind", allow(unreachable_patterns))]
                    Err(_) => unreachable_unchecked(),
                };

                // Run the body of the generator, catching any panics.
                let result = unwind::catch_unwind_at_root(|| f(yielder, input));

                // Return any caught panics to the parent context.
                let mut result = ManuallyDrop::new(result);
                arch::switch_and_reset(util::encode_val(&mut result), yielder.stack_ptr.as_ptr());
            }
        }

        // Drop function to free the initial state of the coroutine.
        unsafe fn drop_fn<T>(ptr: *mut u8) {
            ptr::drop_in_place(ptr as *mut T);
        }

        unsafe {
            // Set up the stack so that the coroutine starts executing
            // coroutine_func. Write the given function object to the stack so
            // its address is passed to coroutine_func on the first resume.
            let stack_ptr = arch::init_stack(&stack, coroutine_func::<Input, Yield, Return, F>, f);

            Self {
                stack,
                stack_ptr: Some(stack_ptr),
                initial_stack_ptr: stack_ptr,
                drop_fn: drop_fn::<F>,
                marker: PhantomData,
                marker2: PhantomData,
            }
        }
    }

    /// Resumes execution of this coroutine.
    ///
    /// This function will transfer execution to the coroutine and resume from
    /// where it last left off.
    ///
    /// If the coroutine calls [`Yielder::suspend`] then this function returns
    /// [`CoroutineResult::Yield`] with the value passed to `suspend`.
    ///
    /// If the coroutine returns then this function returns
    /// [`CoroutineResult::Return`] with the return value of the coroutine.
    ///
    /// # Panics
    ///
    /// Panics if the coroutine has already finished executing.
    ///
    /// If the coroutine itself panics during execution then the panic will be
    /// propagated to this caller.
    pub fn resume(&mut self, val: Input) -> CoroutineResult<Yield, Return> {
        unsafe {
            let stack_ptr = self
                .stack_ptr
                .expect("attempt to resume a completed coroutine");

            // If the coroutine terminated then a caught panic may have been
            // returned, in which case we must resume unwinding.
            match self.resume_inner(stack_ptr, Ok(val)) {
                CoroutineResult::Yield(val) => CoroutineResult::Yield(val),
                CoroutineResult::Return(result) => {
                    CoroutineResult::Return(unwind::maybe_resume_unwind(result))
                }
            }
        }
    }

    /// Common code for resuming execution of a coroutine.
    unsafe fn resume_inner(
        &mut self,
        stack_ptr: StackPointer,
        input: Result<Input, ForcedUnwindErr>,
    ) -> CoroutineResult<Yield, Result<Return, CaughtPanic>> {
        // Pre-emptively set the stack pointer to None in case
        // switch_and_link unwinds.
        self.stack_ptr = None;

        let mut input = ManuallyDrop::new(input);
        let (result, stack_ptr) =
            arch::switch_and_link(util::encode_val(&mut input), stack_ptr, self.stack.base());
        self.stack_ptr = stack_ptr;

        // Decode the returned value depending on whether the coroutine
        // terminated.
        if stack_ptr.is_some() {
            CoroutineResult::Yield(util::decode_val(result))
        } else {
            CoroutineResult::Return(util::decode_val(result))
        }
    }

    /// Returns whether this coroutine has been resumed at least once.
    pub fn started(&self) -> bool {
        self.stack_ptr != Some(self.initial_stack_ptr)
    }

    /// Returns whether this coroutine has finished executing.
    ///
    /// A coroutine that has returned from its initial function can no longer
    /// be resumed.
    pub fn done(&self) -> bool {
        self.stack_ptr.is_none()
    }

    /// Forcibly marks the coroutine as having completed, even if it is
    /// currently suspended in the middle of a function.
    ///
    /// # Safety
    ///
    /// This is equivalent to a `longjmp` all the way back to the initial
    /// function of the coroutine, so the same rules apply.
    ///
    /// This can only be done safely if there are no objects currently on the
    /// coroutine's stack that need to execute `Drop` code.
    pub unsafe fn force_reset(&mut self) {
        self.stack_ptr = None;
    }

    /// Unwinds the coroutine stack, dropping any live objects that are
    /// currently on the stack. This is automatically called when the coroutine
    /// is dropped.
    ///
    /// If the coroutine has already completed then this function is a no-op.
    ///
    /// If the coroutine is currently suspended on a `Yielder::suspend` call
    /// then unwinding it requires the `unwind` feature to be enabled and
    /// for the crate to be compiled with `-C panic=unwind`.
    ///
    /// # Panics
    ///
    /// This function panics if the coroutine could not be fully unwound. This
    /// can happen for one of two reasons:
    /// - The `ForcedUnwind` panic that is used internally was caught and not
    ///   rethrown.
    /// - This crate was compiled without the `unwind` feature and the
    ///   coroutine is currently suspended in the yielder (`started && !done`).
    pub fn force_unwind(&mut self) {
        // If the coroutine has already terminated then there is nothing to do.
        if let Some(stack_ptr) = self.stack_ptr {
            self.force_unwind_slow(stack_ptr);
        }
    }

    /// Slow path of `force_unwind` when the coroutine is known to not have
    /// terminated yet.
    #[cold]
    fn force_unwind_slow(&mut self, stack_ptr: StackPointer) {
        // If the coroutine has not started yet then we just need to drop the
        // initial object.
        if !self.started() {
            unsafe {
                arch::drop_initial_obj(self.stack.base(), stack_ptr, self.drop_fn);
            }
            self.stack_ptr = None;
            return;
        }

        // If the coroutine is suspended then we need the standard library so
        // that we can unwind the stack. This also requires that the code be
        // compiled with -C panic=unwind.
        #[cfg(feature = "unwind")]
        {
            extern crate std;

            let forced_unwind = unwind::ForcedUnwind(stack_ptr);
            let result = unwind::catch_forced_unwind(|| {
                #[cfg(not(feature = "asm-unwind"))]
                let result = unsafe { self.resume_inner(stack_ptr, Err(forced_unwind)) };
                #[cfg(feature = "asm-unwind")]
                let result = unsafe { self.resume_with_exception(stack_ptr, forced_unwind) };
                match result {
                    CoroutineResult::Yield(_) | CoroutineResult::Return(Ok(_)) => Ok(()),
                    #[cfg_attr(feature = "asm-unwind", allow(unreachable_patterns))]
                    CoroutineResult::Return(Err(e)) => Err(e),
                }
            });

            match result {
                Ok(_) => panic!("the ForcedUnwind panic was caught and not rethrown"),
                Err(e) => {
                    if let Some(forced_unwind) = e.downcast_ref::<unwind::ForcedUnwind>() {
                        if forced_unwind.0 == stack_ptr {
                            return;
                        }
                    }

                    std::panic::resume_unwind(e);
                }
            }
        }

        #[cfg(not(feature = "unwind"))]
        panic!("can't unwind a suspended coroutine without the \"unwind\" feature");
    }

    /// Variant of `resume_inner` that throws an exception in the context of
    /// the coroutine instead of passing a value.
    ///
    /// Used by `force_unwind`.
    #[cfg(feature = "asm-unwind")]
    unsafe fn resume_with_exception(
        &mut self,
        stack_ptr: StackPointer,
        forced_unwind: unwind::ForcedUnwind,
    ) -> CoroutineResult<Yield, Result<Return, CaughtPanic>> {
        // Pre-emptively set the stack pointer to None in case
        // switch_and_throw unwinds.
        self.stack_ptr = None;

        let (result, stack_ptr) =
            arch::switch_and_throw(forced_unwind, stack_ptr, self.stack.base());
        self.stack_ptr = stack_ptr;

        // Decode the returned value depending on whether the coroutine
        // terminated.
        if stack_ptr.is_some() {
            CoroutineResult::Yield(util::decode_val(result))
        } else {
            CoroutineResult::Return(util::decode_val(result))
        }
    }

    /// Extracts the stack from a coroutine that has finished executing.
    ///
    /// This allows the stack to be re-used for another coroutine.
    #[allow(unused_mut)]
    pub fn into_stack(mut self) -> Stack {
        assert!(
            self.done(),
            "cannot extract stack from an incomplete coroutine"
        );

        #[cfg(windows)]
        unsafe {
            arch::update_stack_teb_fields(&mut self.stack);
        }

        unsafe {
            let stack = ptr::read(&self.stack);
            mem::forget(self);
            stack
        }
    }

    /// Returns a [`CoroutineTrapHandler`] which can be used to handle traps that
    /// occur inside the coroutine. Examples of traps that can be handled are
    /// invalid memory accesses and stack overflows.
    ///
    /// The returned [`CoroutineTrapHandler`] can be used in a trap handler to
    /// force the trapping coroutine to return with a specific value, after
    /// which is it considered to have completed and can no longer be resumed.
    ///
    /// Needless to say, this is extremely unsafe and must be used with extreme
    /// care. See [`CoroutineTrapHandler::setup_trap_handler`] for the exact
    /// safety requirements.
    pub fn trap_handler(&self) -> CoroutineTrapHandler<Return> {
        CoroutineTrapHandler {
            stack_base: self.stack.base(),
            stack_limit: self.stack.limit(),
            marker: PhantomData,
        }
    }
}

impl<Input, Yield, Return, Stack: stack::Stack> Drop for Coroutine<Input, Yield, Return, Stack> {
    fn drop(&mut self) {
        let guard = scopeguard::guard((), |()| {
            // We can't catch panics in #![no_std], force an abort using
            // a double-panic.
            panic!("cannot propagte coroutine panic with #![no_std]");
        });
        self.force_unwind();
        mem::forget(guard);

        #[cfg(windows)]
        unsafe {
            arch::update_stack_teb_fields(&mut self.stack);
        }
    }
}

/// `Yielder` is an interface provided to a coroutine which allows it to suspend
/// itself and pass values in and out of the coroutine.
///
/// Multiple references can be created to the same `Yielder`, but these cannot
/// be moved to another thread.
#[repr(transparent)]
pub struct Yielder<Input, Yield> {
    // Internally the Yielder is just the parent link on the stack which is
    // updated every time resume() is called.
    stack_ptr: Cell<StackPointer>,
    marker: PhantomData<fn(Yield) -> Input>,
}

impl<Input, Yield> Yielder<Input, Yield> {
    /// Suspends the execution of a currently running coroutine.
    ///
    /// This function will switch control back to the original caller of
    /// [`Coroutine::resume`]. This function will then return once the
    /// [`Coroutine::resume`] function is called again.
    pub fn suspend(&self, val: Yield) -> Input {
        unsafe {
            let mut val = ManuallyDrop::new(val);
            let result = arch::switch_yield(util::encode_val(&mut val), self.stack_ptr.as_ptr());
            unwind::maybe_force_unwind(util::decode_val(result))
        }
    }

    /// Executes some code on the stack of the parent context (the one who
    /// last resumed the current coroutine).
    ///
    /// This is particularly useful when executing on a coroutine with limited
    /// stack space: stack-heavy operations can be performed in a way that
    /// avoids stack overflows on the coroutine stack.
    ///
    /// # Panics
    ///
    /// Any panics in the provided closure are automatically propagated back up
    /// to the caller of this function.
    pub fn on_parent_stack<F, R>(&self, f: F) -> R
    where
        F: FnOnce() -> R,
        // The F: Send bound here is somewhat subtle but important. It exists to
        // prevent references to the Yielder from being passed into the parent
        // thread.
        F: Send,
    {
        // Get the top of the parent stack.
        let stack_ptr = unsafe {
            StackPointer::new_unchecked(self.stack_ptr.get().get() - arch::PARENT_LINK_OFFSET)
        };

        // Create a virtual stack that starts below the parent stack.
        let stack = unsafe { ParentStack::new(stack_ptr) };

        on_stack(stack, f)
    }
}

/// Executes some code on the given stack.
///
/// This is useful when running with limited stack space: stack-intensive
/// computation can be executed on a separate stack with more space.
///
/// # Panics
///
/// Any panics in the provided closure are automatically propagated back up to
/// the caller of this function.
pub fn on_stack<F, R>(stack: impl stack::Stack, f: F) -> R
where
    F: FnOnce() -> R,
{
    // Union to hold both the function and its result.
    union FuncOrResult<F, R> {
        func: ManuallyDrop<F>,
        result: ManuallyDrop<Result<R, CaughtPanic>>,
    }

    initial_func_abi! {
        unsafe fn wrapper<F, R>(ptr: *mut u8)
        where
            F: FnOnce() -> R,
        {
            // Read the function out of the union.
            let data = &mut *(ptr as *mut FuncOrResult<F, R>);
            let func = ManuallyDrop::take(&mut data.func);

            // Call it.
            let result = unwind::catch_unwind_at_root(func);

            // And write the result back to the union.
            data.result = ManuallyDrop::new(result);
        }
    }

    unsafe {
        let mut data = FuncOrResult {
            func: ManuallyDrop::new(f),
        };

        // Call the wrapper function on the new stack.
        arch::on_stack(&mut data as *mut _ as *mut u8, stack, wrapper::<F, R>);

        // Re-throw any panics if one was caught.
        unwind::maybe_resume_unwind(ManuallyDrop::take(&mut data.result))
    }
}

/// Custom stack implementation used by `on_parent_stack`. This is a private
/// type because it is generally unsafe to use:
struct ParentStack {
    /// Base address of the stack, below any existing data on the parent stack.
    stack_base: StackPointer,

    /// Stack pointer value of the parent stack. This is not the same as
    /// `stack_base` since the latter has been aligned to `STACK_ALIGNMENT`.
    ///
    /// This is needed on Windows to access the saved TEB fields on the parent
    /// stack.
    #[cfg(windows)]
    stack_ptr: StackPointer,
}

impl ParentStack {
    #[inline]
    unsafe fn new(stack_ptr: StackPointer) -> Self {
        let stack_base = StackPointer::new_unchecked(stack_ptr.get() & !(STACK_ALIGNMENT - 1));
        Self {
            stack_base,
            #[cfg(windows)]
            stack_ptr,
        }
    }
}

unsafe impl stack::Stack for ParentStack {
    #[inline]
    fn base(&self) -> StackPointer {
        self.stack_base
    }

    // We can get away with a dummy implementation here because we never expose
    // the coroutine type to the user. This is only used for creating a
    // CoroutineTrapHandler.
    #[inline]
    fn limit(&self) -> StackPointer {
        self.stack_base
    }

    #[inline]
    #[cfg(windows)]
    fn teb_fields(&self) -> StackTebFields {
        unsafe { arch::read_parent_stack_teb_fields(self.stack_ptr) }
    }

    #[inline]
    #[cfg(windows)]
    fn update_teb_fields(&mut self, stack_limit: usize, guaranteed_stack_bytes: usize) {
        unsafe {
            arch::update_parent_stack_teb_fields(
                self.stack_ptr,
                stack_limit,
                guaranteed_stack_bytes,
            );
        }
    }
}