1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
//! Startup code and minimal runtime for Cortex-M microcontrollers //! //! This crate contains all the required parts to build a `no_std` application (binary crate) that //! targets a Cortex-M microcontroller. //! //! # Features //! //! This crates takes care of: //! //! - The memory layout of the program. In particular, it populates the vector table so the device //! can boot correctly, and properly dispatch exceptions and interrupts. //! //! - Initializing `static` variables before the program entry point. //! //! - Enabling the FPU before the program entry point if the target is `thumbv7em-none-eabihf`. //! //! This crate also provides the following attributes: //! //! - [`#[entry]`][attr-entry] to declare the entry point of the program //! - [`#[exception]`][attr-exception] to override an exception handler. If not overridden all //! exception handlers default to an infinite loop. //! - [`#[pre_init]`][attr-pre_init] to run code *before* `static` variables are initialized //! //! This crate also implements a related attribute called `#[interrupt]`, which allows you //! to define interrupt handlers. However, since which interrupts are available depends on the //! microcontroller in use, this attribute should be re-exported and used from a device crate. //! //! The documentation for these attributes can be found in the [Attribute Macros](#attributes) //! section. //! //! # Requirements //! //! ## `memory.x` //! //! This crate expects the user, or some other crate, to provide the memory layout of the target //! device via a linker script named `memory.x`. This section covers the contents of `memory.x` //! //! ### `MEMORY` //! //! The linker script must specify the memory available in the device as, at least, two `MEMORY` //! regions: one named `FLASH` and one named `RAM`. The `.text` and `.rodata` sections of the //! program will be placed in the `FLASH` region, whereas the `.bss` and `.data` sections, as well //! as the heap,will be placed in the `RAM` region. //! //! ``` text //! /* Linker script for the STM32F103C8T6 */ //! MEMORY //! { //! FLASH : ORIGIN = 0x08000000, LENGTH = 64K //! RAM : ORIGIN = 0x20000000, LENGTH = 20K //! } //! ``` //! //! ### `_stack_start` //! //! This optional symbol can be used to indicate where the call stack of the program should be //! placed. If this symbol is not used then the stack will be placed at the *end* of the `RAM` //! region -- the stack grows downwards towards smaller address. This symbol can be used to place //! the stack in a different memory region, for example: //! //! ``` text //! /* Linker script for the STM32F303VCT6 */ //! MEMORY //! { //! FLASH : ORIGIN = 0x08000000, LENGTH = 256K //! //! /* .bss, .data and the heap go in this region */ //! RAM : ORIGIN = 0x20000000, LENGTH = 40K //! //! /* Core coupled (faster) RAM dedicated to hold the stack */ //! CCRAM : ORIGIN = 0x10000000, LENGTH = 8K //! } //! //! _stack_start = ORIGIN(CCRAM) + LENGTH(CCRAM); //! ``` //! //! ### `_stext` //! //! This optional symbol can be used to control where the `.text` section is placed. If omitted the //! `.text` section will be placed right after the vector table, which is placed at the beginning of //! `FLASH`. Some devices store settings like Flash configuration right after the vector table; //! for these devices one must place the `.text` section after this configuration section -- //! `_stext` can be used for this purpose. //! //! ``` text //! MEMORY //! { //! /* .. */ //! } //! //! /* The device stores Flash configuration in 0x400-0x40C so we place .text after that */ //! _stext = ORIGIN(FLASH) + 0x40C //! ``` //! //! # An example //! //! This section presents a minimal application built on top of `cortex-m-rt`. Apart from the //! mandatory `memory.x` linker script describing the memory layout of the device, the hard fault //! handler and the default exception handler must also be defined somewhere in the dependency //! graph (see [`#[exception]`]). In this example we define them in the binary crate: //! //! ``` ignore //! // IMPORTANT the standard `main` interface is not used because it requires nightly //! #![no_main] //! #![no_std] //! //! extern crate cortex_m_rt as rt; //! //! // makes `panic!` print messages to the host stderr using semihosting //! extern crate panic_semihosting; //! //! use rt::entry; //! //! // use `main` as the entry point of this application //! // `main` is not allowed to return //! #[entry] //! fn main() -> ! { //! // initialization //! //! loop { //! // application logic //! } //! } //! ``` //! //! To actually build this program you need to place a `memory.x` linker script somewhere the linker //! can find it, e.g. in the current directory; and then link the program using `cortex-m-rt`'s //! linker script: `link.x`. The required steps are shown below: //! //! ``` text //! $ cat > memory.x <<EOF //! /* Linker script for the STM32F103C8T6 */ //! MEMORY //! { //! FLASH : ORIGIN = 0x08000000, LENGTH = 64K //! RAM : ORIGIN = 0x20000000, LENGTH = 20K //! } //! EOF //! //! $ cargo rustc --target thumbv7m-none-eabi -- \ //! -C link-arg=-nostartfiles -C link-arg=-Tlink.x //! //! $ file target/thumbv7m-none-eabi/debug/app //! app: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), statically linked, (..) //! ``` //! //! # Optional features //! //! ## `device` //! //! If this feature is disabled then this crate populates the whole vector table. All the interrupts //! in the vector table, even the ones unused by the target device, will be bound to the default //! exception handler. This makes the final application device agnostic: you will be able to run it //! on any Cortex-M device -- provided that you correctly specified its memory layout in `memory.x` //! -- without hitting undefined behavior. //! //! If this feature is enabled then the interrupts section of the vector table is left unpopulated //! and some other crate, or the user, will have to populate it. This mode is meant to be used in //! conjunction with crates generated using `svd2rust`. Those *device crates* will populate the //! missing part of the vector table when their `"rt"` feature is enabled. //! //! # Inspection //! //! This section covers how to inspect a binary that builds on top of `cortex-m-rt`. //! //! ## Sections (`size`) //! //! `cortex-m-rt` uses standard sections like `.text`, `.rodata`, `.bss` and `.data` as one would //! expect. `cortex-m-rt` separates the vector table in its own section, named `.vector_table`. This //! lets you distinguish how much space is taking the vector table in Flash vs how much is being //! used by actual instructions (`.text`) and constants (`.rodata`). //! //! ``` text //! $ size -Ax target/thumbv7m-none-eabi/examples/app //! target/thumbv7m-none-eabi/release/examples/app : //! section size addr //! .vector_table 0x400 0x8000000 //! .text 0x88 0x8000400 //! .rodata 0x0 0x8000488 //! .data 0x0 0x20000000 //! .bss 0x0 0x20000000 //! ``` //! //! Without the `-A` argument `size` reports the sum of the sizes of `.text`, `.rodata` and //! `.vector_table` under "text". //! //! ``` text //! $ size target/thumbv7m-none-eabi/examples/app //! text data bss dec hex filename //! 1160 0 0 1660 67c target/thumbv7m-none-eabi/release/app //! ``` //! //! ## Symbols (`objdump`, `nm`) //! //! One will always find the following (unmangled) symbols in `cortex-m-rt` applications: //! //! - `Reset`. This is the reset handler. The microcontroller will executed this function upon //! booting. This function will call the user program entry point (cf. [`#[entry]`][attr-entry]) //! using the `main` symbol so you may also find that symbol in your program; if you do, `main` //! will contain your application code. Some other times `main` gets inlined into `Reset` so you //! won't find it. //! //! - `DefaultHandler`. This is the default handler. If not overridden using `#[exception] fn //! DefaultHandler(..` this will be an infinite loop. //! //! - `HardFaultTrampoline`. This is the real hard fault handler. This function is simply a //! trampoline that jumps into the user defined hard fault handler named `HardFault`. The //! trampoline is required to set up the pointer to the stacked exception frame. //! //! - `HardFault`. This is the user defined hard fault handler. If not overridden using //! `#[exception] fn HardFault(..` it will default to an infinite loop. //! //! - `__STACK_START`. This is the first entry in the `.vector_table` section. This symbol contains //! the initial value of the stack pointer; this is where the stack will be located -- the stack //! grows downwards towards smaller addresses. //! //! - `__RESET_VECTOR`. This is the reset vector, a pointer into the `Reset` handler. This vector is //! located in the `.vector_table` section after `__STACK_START`. //! //! - `__EXCEPTIONS`. This is the core exceptions portion of the vector table; it's an array of 14 //! exception vectors, which includes exceptions like `HardFault` and `SysTick`. This array is //! located after `__RESET_VECTOR` in the `.vector_table` section. //! //! - `__INTERRUPTS`. This is the device specific interrupt portion of the vector table; its exact //! size depends on the target device but if the `"device"` feature has not been enabled it will //! have a size of 32 vectors (on ARMv6-M) or 240 vectors (on ARMv7-M). This array is located after //! `__EXCEPTIONS` in the `.vector_table` section. //! //! - `__pre_init`. This is a function to be run before RAM is initialized. It defaults to an empty //! function. The function called can be changed by applying the [`#[pre_init]`][attr-pre_init] //! attribute to a function. The empty function is not optimized out by default, but if an empty //! function is passed to [`#[pre_init]`][attr-pre_init] the function call will be optimized out. //! //! If you override any exception handler you'll find it as an unmangled symbol, e.g. `SysTick` or //! `SVCall`, in the output of `objdump`, //! //! If you are targeting the `thumbv7em-none-eabihf` target you'll also see a `ResetTrampoline` //! symbol in the output. To avoid the compiler placing FPU instructions before the FPU has been //! enabled (cf. `vpush`) `Reset` calls the function `ResetTrampoline` which is marked as //! `#[inline(never)]` and `ResetTrampoline` calls `main`. The compiler is free to inline `main` //! into `ResetTrampoline` but it can't inline `ResetTrampoline` into `Reset` -- the FPU is enabled //! in `Reset`. //! //! # Advanced usage //! //! ## Setting the program entry point //! //! This section describes how [`#[entry]`][attr-entry] is implemented. This information is useful //! to developers who want to provide an alternative to [`#[entry]`][attr-entry] that provides extra //! guarantees. //! //! The `Reset` handler will call a symbol named `main` (unmangled) *after* initializing `.bss` and //! `.data`, and enabling the FPU (if the target is `thumbv7em-none-eabihf`). A function with the //! `entry` attribute will be set to have the export name "`main`"; in addition, its mutable //! statics are turned into safe mutable references (see [`#[entry]`][attr-entry] for details). //! //! The unmangled `main` symbol must have signature `extern "C" fn() -> !` or its invocation from //! `Reset` will result in undefined behavior. //! //! ## Incorporating device specific interrupts //! //! This section covers how an external crate can insert device specific interrupt handlers into the //! vector table. Most users don't need to concern themselves with these details, but if you are //! interested in how device crates generated using `svd2rust` integrate with `cortex-m-rt` read on. //! //! The information in this section applies when the `"device"` feature has been enabled. //! //! ### `__INTERRUPTS` //! //! The external crate must provide the interrupts portion of the vector table via a `static` //! variable named`__INTERRUPTS` (unmangled) that must be placed in the `.vector_table.interrupts` //! section of its object file. //! //! This `static` variable will be placed at `ORIGIN(FLASH) + 0x40`. This address corresponds to the //! spot where IRQ0 (IRQ number 0) is located. //! //! To conform to the Cortex-M ABI `__INTERRUPTS` must be an array of function pointers; some spots //! in this array may need to be set to 0 if they are marked as *reserved* in the data sheet / //! reference manual. We recommend using a `union` to set the reserved spots to `0`; `None` //! (`Option<fn()>`) may also work but it's not guaranteed that the `None` variant will *always* be //! represented by the value `0`. //! //! Let's illustrate with an artificial example where a device only has two interrupt: `Foo`, with //! IRQ number = 2, and `Bar`, with IRQ number = 4. //! //! ``` ignore //! union Vector { //! handler: extern "C" fn(), //! reserved: usize, //! } //! //! extern "C" { //! fn Foo(); //! fn Bar(); //! } //! //! #[link_section = ".vector_table.interrupts"] //! #[no_mangle] //! pub static __INTERRUPTS: [Vector; 5] = [ //! // 0-1: Reserved //! Vector { reserved: 0 }, //! Vector { reserved: 0 }, //! //! // 2: Foo //! Vector { handler: Foo }, //! //! // 3: Reserved //! Vector { reserved: 0 }, //! //! // 4: Bar //! Vector { handler: Bar }, //! ]; //! ``` //! //! ### `device.x` //! //! Linking in `__INTERRUPTS` creates a bunch of undefined references. If the user doesn't set a //! handler for *all* the device specific interrupts then linking will fail with `"undefined //! reference"` errors. //! //! We want to provide a default handler for all the interrupts while still letting the user //! individually override each interrupt handler. In C projects, this is usually accomplished using //! weak aliases declared in external assembly files. In Rust, we could achieve something similar //! using `global_asm!`, but that's an unstable feature. //! //! A solution that doesn't require `global_asm!` or external assembly files is to use the `PROVIDE` //! command in a linker script to create the weak aliases. This is the approach that `cortex-m-rt` //! uses; when the `"device"` feature is enabled `cortex-m-rt`'s linker script (`link.x`) depends on //! a linker script named `device.x`. The crate that provides `__INTERRUPTS` must also provide this //! file. //! //! For our running example the `device.x` linker script looks like this: //! //! ``` text //! /* device.x */ //! PROVIDE(Foo = DefaultHandler); //! PROVIDE(Bar = DefaultHandler); //! ``` //! //! This weakly aliases both `Foo` and `Bar`. `DefaultHandler` is the default exception handler and //! that the core exceptions use unless overridden. //! //! Because this linker script is provided by a dependency of the final application the dependency //! must contain build script that puts `device.x` somewhere the linker can find. An example of such //! build script is shown below: //! //! ``` ignore //! use std::env; //! use std::fs::File; //! use std::io::Write; //! use std::path::PathBuf; //! //! fn main() { //! // Put the linker script somewhere the linker can find it //! let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap()); //! File::create(out.join("device.x")) //! .unwrap() //! .write_all(include_bytes!("device.x")) //! .unwrap(); //! println!("cargo:rustc-link-search={}", out.display()); //! } //! ``` //! //! ## Uninitialized static variables //! //! The `.uninit` linker section can be used to leave `static mut` variables uninitialized. One use //! case of unitialized static variables is to avoid zeroing large statically allocated buffers (say //! to be used as thread stacks) -- this can considerably reduce initialization time on devices that //! operate at low frequencies. //! //! The only correct way to use this section is by placing `static mut` variables with type //! [`MaybeUninit`] in it. //! //! [`MaybeUninit`]: https://doc.rust-lang.org/core/mem/union.MaybeUninit.html //! //! ``` ignore //! use core::mem::MaybeUninit; //! //! const STACK_SIZE: usize = 8 * 1024; //! const NTHREADS: usize = 4; //! //! #[link_section = ".uninit.STACKS"] //! static mut STACKS: MaybeUninit<[[u8; STACK_SIZE]; NTHREADS]> = MaybeUninit::uninit(); //! ``` //! //! Be very careful with the `link_section` attribute because it's easy to misuse in ways that cause //! undefined behavior. At some point in the future we may add an attribute to safely place static //! variables in this section. //! //! [attr-entry]: attr.entry.html //! [attr-exception]: attr.exception.html //! [attr-pre_init]: attr.pre_init.html // # Developer notes // // - `link_section` is used to place symbols in specific places of the final binary. The names used // here will appear in the linker script (`link.x`) in conjunction with the `KEEP` command. #![deny(missing_docs)] #![deny(warnings)] #![no_std] extern crate cortex_m_rt_macros as macros; extern crate r0; use core::fmt; use core::sync::atomic::{self, Ordering}; #[cfg(feature = "device")] #[doc(inline)] pub use macros::interrupt; #[doc(inline)] pub use macros::{entry, exception, pre_init}; #[export_name = "error: cortex-m-rt appears more than once in the dependency graph"] #[doc(hidden)] pub static __ONCE__: () = (); /// Registers stacked (pushed onto the stack) during an exception. #[derive(Clone, Copy)] #[repr(C)] pub struct ExceptionFrame { /// (General purpose) Register 0 pub r0: u32, /// (General purpose) Register 1 pub r1: u32, /// (General purpose) Register 2 pub r2: u32, /// (General purpose) Register 3 pub r3: u32, /// (General purpose) Register 12 pub r12: u32, /// Linker Register pub lr: u32, /// Program Counter pub pc: u32, /// Program Status Register pub xpsr: u32, } impl fmt::Debug for ExceptionFrame { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { struct Hex(u32); impl fmt::Debug for Hex { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "0x{:08x}", self.0) } } f.debug_struct("ExceptionFrame") .field("r0", &Hex(self.r0)) .field("r1", &Hex(self.r1)) .field("r2", &Hex(self.r2)) .field("r3", &Hex(self.r3)) .field("r12", &Hex(self.r12)) .field("lr", &Hex(self.lr)) .field("pc", &Hex(self.pc)) .field("xpsr", &Hex(self.xpsr)) .finish() } } /// Returns a pointer to the start of the heap /// /// The returned pointer is guaranteed to be 4-byte aligned. #[inline] pub fn heap_start() -> *mut u32 { extern "C" { static mut __sheap: u32; } unsafe { &mut __sheap } } /* Entry point */ #[doc(hidden)] #[cfg_attr(cortex_m, link_section = ".vector_table.reset_vector")] #[no_mangle] #[cfg(not(armv6m))] pub static __RESET_VECTOR: unsafe extern "C" fn() -> ! = Reset; #[doc(hidden)] #[link_section = ".vector_table.reset_vector"] #[no_mangle] #[cfg(armv6m)] pub static __RESET_VECTOR: unsafe extern "C" fn() -> ! = PreResetTrampoline; #[doc(hidden)] #[cfg_attr(cortex_m, link_section = ".Reset")] #[no_mangle] pub unsafe extern "C" fn Reset() -> ! { extern "C" { // These symbols come from `link.x` static mut __sbss: u32; static mut __ebss: u32; static mut __sdata: u32; static mut __edata: u32; static __sidata: u32; } extern "Rust" { // This symbol will be provided by the user via `#[entry]` fn main() -> !; // This symbol will be provided by the user via `#[pre_init]` fn __pre_init(); } __pre_init(); // Initialize RAM r0::zero_bss(&mut __sbss, &mut __ebss); r0::init_data(&mut __sdata, &mut __edata, &__sidata); match () { #[cfg(not(has_fpu))] () => main(), #[cfg(has_fpu)] () => { // We redefine these here to avoid pulling the `cortex-m` crate as a dependency const SCB_CPACR: *mut u32 = 0xE000_ED88 as *mut u32; const SCB_CPACR_FPU_ENABLE: u32 = 0b01_01 << 20; const SCB_CPACR_FPU_USER: u32 = 0b10_10 << 20; // enable the FPU core::ptr::write_volatile( SCB_CPACR, *SCB_CPACR | SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER, ); // this is used to prevent the compiler from inlining the user `main` into the reset // handler. Inlining can cause the FPU instructions in the user `main` to be executed // before enabling the FPU, and that would produce a hard to diagnose hard fault at // runtime. #[inline(never)] #[export_name = "ResetTrampoline"] fn trampoline() -> ! { unsafe { main() } } trampoline() } } } #[allow(unused_variables)] #[doc(hidden)] #[cfg_attr(cortex_m, link_section = ".HardFault.default")] #[no_mangle] pub unsafe extern "C" fn HardFault_(ef: &ExceptionFrame) -> ! { loop { // add some side effect to prevent this from turning into a UDF instruction // see rust-lang/rust#28728 for details atomic::compiler_fence(Ordering::SeqCst); } } #[doc(hidden)] #[no_mangle] pub unsafe extern "C" fn DefaultHandler_() -> ! { loop { // add some side effect to prevent this from turning into a UDF instruction // see rust-lang/rust#28728 for details atomic::compiler_fence(Ordering::SeqCst); } } #[doc(hidden)] #[no_mangle] pub unsafe extern "C" fn DefaultPreInit() {} /* Exceptions */ #[doc(hidden)] pub enum Exception { NonMaskableInt, // Not overridable // HardFault, #[cfg(not(armv6m))] MemoryManagement, #[cfg(not(armv6m))] BusFault, #[cfg(not(armv6m))] UsageFault, #[cfg(armv8m)] SecureFault, SVCall, #[cfg(not(armv6m))] DebugMonitor, PendSV, SysTick, } extern "C" { #[cfg(armv6m)] fn PreResetTrampoline() -> !; fn NonMaskableInt(); fn HardFaultTrampoline(); #[cfg(not(armv6m))] fn MemoryManagement(); #[cfg(not(armv6m))] fn BusFault(); #[cfg(not(armv6m))] fn UsageFault(); #[cfg(armv8m)] fn SecureFault(); fn SVCall(); #[cfg(not(armv6m))] fn DebugMonitor(); fn PendSV(); fn SysTick(); } #[doc(hidden)] pub union Vector { handler: unsafe extern "C" fn(), reserved: usize, } #[doc(hidden)] #[cfg_attr(cortex_m, link_section = ".vector_table.exceptions")] #[no_mangle] pub static __EXCEPTIONS: [Vector; 14] = [ // Exception 2: Non Maskable Interrupt. Vector { handler: NonMaskableInt, }, // Exception 3: Hard Fault Interrupt. Vector { handler: HardFaultTrampoline }, // Exception 4: Memory Management Interrupt [not on Cortex-M0 variants]. #[cfg(not(armv6m))] Vector { handler: MemoryManagement, }, #[cfg(armv6m)] Vector { reserved: 0 }, // Exception 5: Bus Fault Interrupt [not on Cortex-M0 variants]. #[cfg(not(armv6m))] Vector { handler: BusFault }, #[cfg(armv6m)] Vector { reserved: 0 }, // Exception 6: Usage Fault Interrupt [not on Cortex-M0 variants]. #[cfg(not(armv6m))] Vector { handler: UsageFault, }, #[cfg(armv6m)] Vector { reserved: 0 }, // Exception 7: Secure Fault Interrupt [only on Armv8-M]. #[cfg(armv8m)] Vector { handler: SecureFault, }, #[cfg(not(armv8m))] Vector { reserved: 0 }, // 8-10: Reserved Vector { reserved: 0 }, Vector { reserved: 0 }, Vector { reserved: 0 }, // Exception 11: SV Call Interrupt. Vector { handler: SVCall }, // Exception 12: Debug Monitor Interrupt [not on Cortex-M0 variants]. #[cfg(not(armv6m))] Vector { handler: DebugMonitor, }, #[cfg(armv6m)] Vector { reserved: 0 }, // 13: Reserved Vector { reserved: 0 }, // Exception 14: Pend SV Interrupt [not on Cortex-M0 variants]. Vector { handler: PendSV }, // Exception 15: System Tick Interrupt. Vector { handler: SysTick }, ]; // If we are not targeting a specific device we bind all the potential device specific interrupts // to the default handler #[cfg(all(any(not(feature = "device"), test), not(armv6m)))] #[doc(hidden)] #[cfg_attr(cortex_m, link_section = ".vector_table.interrupts")] #[no_mangle] pub static __INTERRUPTS: [unsafe extern "C" fn(); 240] = [{ extern "C" { fn DefaultHandler(); } DefaultHandler }; 240]; // ARMv6-M can only have a maximum of 32 device specific interrupts #[cfg(all(not(feature = "device"), armv6m))] #[doc(hidden)] #[cfg_attr(cortex_m, link_section = ".vector_table.interrupts")] #[no_mangle] pub static __INTERRUPTS: [unsafe extern "C" fn(); 32] = [{ extern "C" { fn DefaultHandler(); } DefaultHandler }; 32];