cortex_m_rt/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
//! Startup code and minimal runtime for Cortex-M microcontrollers
//!
//! This crate contains all the required parts to build a `no_std` application (binary crate) that
//! targets a Cortex-M microcontroller.
//!
//! # Features
//!
//! This crates takes care of:
//!
//! - The memory layout of the program. In particular, it populates the vector table so the device
//!   can boot correctly, and properly dispatch exceptions and interrupts.
//!
//! - Initializing `static` variables before the program entry point.
//!
//! - Enabling the FPU before the program entry point if the target is `-eabihf`.
//!
//! This crate also provides the following attributes:
//!
//! - [`#[entry]`][attr-entry] to declare the entry point of the program
//! - [`#[exception]`][attr-exception] to override an exception handler. If not overridden all
//!   exception handlers default to an infinite loop.
//!
//! This crate also implements a related attribute called `#[interrupt]`, which allows you
//! to define interrupt handlers. However, since which interrupts are available depends on the
//! microcontroller in use, this attribute should be re-exported and used from a peripheral
//! access crate (PAC).
//!
//! A [`#[pre_init]`][attr-pre_init] macro is also provided to run a function before RAM
//! initialisation, but its use is deprecated as it is not defined behaviour to execute Rust
//! code before initialisation. It is still possible to create a custom `pre_init` function
//! using assembly.
//!
//! The documentation for these attributes can be found in the [Attribute Macros](#attributes)
//! section.
//!
//! # Requirements
//!
//! ## `memory.x`
//!
//! This crate expects the user, or some other crate, to provide the memory layout of the target
//! device via a linker script named `memory.x`, described in this section.  The `memory.x` file is
//! used during linking by the `link.x` script provided by this crate. If you are using a custom
//! linker script, you do not need a `memory.x` file.
//!
//! ### `MEMORY`
//!
//! The linker script must specify the memory available in the device as, at least, two `MEMORY`
//! regions: one named `FLASH` and one named `RAM`. The `.text` and `.rodata` sections of the
//! program will be placed in the `FLASH` region, whereas the `.bss` and `.data` sections, as well
//! as the heap, will be placed in the `RAM` region.
//!
//! ```text
//! /* Linker script for the STM32F103C8T6 */
//! MEMORY
//! {
//!   FLASH : ORIGIN = 0x08000000, LENGTH = 64K
//!   RAM   : ORIGIN = 0x20000000, LENGTH = 20K
//! }
//! ```
//!
//! ### `_stack_start` / `_stack_end`
//!
//! The `_stack_start` optional symbol can be used to indicate where the call stack of the program
//! should be placed. If this symbol is not used then the stack will be placed at the *end* of the
//! `RAM` region -- the stack grows downwards towards smaller address. This is generally a sensible
//! default and most applications will not need to specify `_stack_start`. The same goes for
//! `_stack_end` which is automatically placed after the end of statically allocated RAM.
//!
//! **NOTE:** If you change `_stack_start`, make sure to also set `_stack_end` correctly to match
//! new stack area if you are using it, e.g for MSPLIM. The `_stack_end` is not used internally by
//! `cortex-m-rt` and is only for application use.
//!
//! For Cortex-M, the `_stack_start` must always be aligned to 8 bytes, which is enforced by
//! the linker script. If you override it, ensure that whatever value you set is a multiple
//! of 8 bytes. The `_stack_end` is aligned to 4 bytes.
//!
//! This symbol can be used to place the stack in a different memory region, for example:
//!
//! ```text
//! /* Linker script for the STM32F303VCT6 with stack in CCM */
//! MEMORY
//! {
//!     FLASH : ORIGIN = 0x08000000, LENGTH = 256K
//!
//!     /* .bss, .data and the heap go in this region */
//!     RAM   : ORIGIN = 0x20000000, LENGTH = 40K
//!
//!     /* Core coupled (faster) RAM dedicated to hold the stack */
//!     CCRAM : ORIGIN = 0x10000000, LENGTH = 8K
//! }
//!
//! _stack_start = ORIGIN(CCRAM) + LENGTH(CCRAM);
//! _stack_end = ORIGIN(CCRAM); /* Optional, add if used by the application */
//! ```
//!
//! ### `_stext`
//!
//! This optional symbol can be used to control where the `.text` section is placed. If omitted the
//! `.text` section will be placed right after the vector table, which is placed at the beginning of
//! `FLASH`. Some devices store settings like Flash configuration right after the vector table;
//! for these devices one must place the `.text` section after this configuration section --
//! `_stext` can be used for this purpose.
//!
//! ```text
//! MEMORY
//! {
//!   /* .. */
//! }
//!
//! /* The device stores Flash configuration in 0x400-0x40C so we place .text after that */
//! _stext = ORIGIN(FLASH) + 0x40C
//! ```
//!
//! # An example
//!
//! This section presents a minimal application built on top of `cortex-m-rt`. Apart from the
//! mandatory `memory.x` linker script describing the memory layout of the device, the hard fault
//! handler and the default exception handler must also be defined somewhere in the dependency
//! graph (see [`#[exception]`]). In this example we define them in the binary crate:
//!
//! ```no_run
//! #![no_main]
//! #![no_std]
//!
//! // Some panic handler needs to be included. This one halts the processor on panic.
//! use panic_halt as _;
//!
//! use cortex_m_rt::entry;
//!
//! // Use `main` as the entry point of this application, which may not return.
//! #[entry]
//! fn main() -> ! {
//!     // initialization
//!
//!     loop {
//!         // application logic
//!     }
//! }
//! ```
//!
//! To actually build this program you need to place a `memory.x` linker script somewhere the linker
//! can find it, e.g. in the current directory; and then link the program using `cortex-m-rt`'s
//! linker script: `link.x`. The required steps are shown below:
//!
//! ```text
//! $ cat > memory.x <<EOF
//! MEMORY
//! {
//!   FLASH : ORIGIN = 0x08000000, LENGTH = 64K
//!   RAM : ORIGIN = 0x20000000, LENGTH = 20K
//! }
//! EOF
//!
//! $ cargo rustc --target thumbv7m-none-eabi -- -C link-arg=-nostartfiles -C link-arg=-Tlink.x
//!
//! $ file target/thumbv7m-none-eabi/debug/app
//! app: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), statically linked, (..)
//! ```
//!
//! # Optional features
//!
//! ## `device`
//!
//! If this feature is disabled then this crate populates the whole vector table. All the interrupts
//! in the vector table, even the ones unused by the target device, will be bound to the default
//! exception handler. This makes the final application device agnostic: you will be able to run it
//! on any Cortex-M device -- provided that you correctly specified its memory layout in `memory.x`
//! -- without hitting undefined behavior.
//!
//! If this feature is enabled then the interrupts section of the vector table is left unpopulated
//! and some other crate, or the user, will have to populate it. This mode is meant to be used in
//! conjunction with crates generated using `svd2rust`. Those peripheral access crates, or PACs,
//! will populate the missing part of the vector table when their `"rt"` feature is enabled.
//!
//! ## `set-sp`
//!
//! If this feature is enabled, the stack pointer (SP) is initialised in the reset handler to the
//! `_stack_start` value from the linker script. This is not usually required, but some debuggers
//! do not initialise SP when performing a soft reset, which can lead to stack corruption.
//!
//! ## `set-vtor`
//!
//! If this feature is enabled, the vector table offset register (VTOR) is initialised in the reset
//! handler to the start of the vector table defined in the linker script. This is not usually
//! required, but some bootloaders do not set VTOR before jumping to application code, leading to
//! your main function executing but interrupt handlers not being used.
//!
//! ## `zero-init-ram`
//!
//! If this feature is enabled, RAM is initialized with zeros during startup from the `_ram_start`
//! value to the `_ram_end` value from the linker script. This is not usually required, but might be
//! necessary to properly initialize memory integrity measures on some hardware.
//!
//! ## `paint-stack`
//!
//! Everywhere between `__sheap` and `_stack_start` is painted with the fixed value
//! `STACK_PAINT_VALUE`, which is `0xCCCC_CCCC`.
//! You can then inspect memory during debugging to determine how much of the stack has been used -
//! where the stack has been used the 'paint' will have been 'scrubbed off' and the memory will
//! have a value other than `STACK_PAINT_VALUE`.
//!
//! # Inspection
//!
//! This section covers how to inspect a binary that builds on top of `cortex-m-rt`.
//!
//! ## Sections (`size`)
//!
//! `cortex-m-rt` uses standard sections like `.text`, `.rodata`, `.bss` and `.data` as one would
//! expect. `cortex-m-rt` separates the vector table in its own section, named `.vector_table`. This
//! lets you distinguish how much space is taking the vector table in Flash vs how much is being
//! used by actual instructions (`.text`) and constants (`.rodata`).
//!
//! ```text
//! $ size -Ax target/thumbv7m-none-eabi/examples/app
//! target/thumbv7m-none-eabi/release/examples/app  :
//! section             size         addr
//! .vector_table      0x400    0x8000000
//! .text               0x88    0x8000400
//! .rodata              0x0    0x8000488
//! .data                0x0   0x20000000
//! .bss                 0x0   0x20000000
//! ```
//!
//! Without the `-A` argument `size` reports the sum of the sizes of `.text`, `.rodata` and
//! `.vector_table` under "text".
//!
//! ```text
//! $ size target/thumbv7m-none-eabi/examples/app
//!   text    data     bss     dec     hex filename
//!   1160       0       0    1660     67c target/thumbv7m-none-eabi/release/app
//! ```
//!
//! ## Symbols (`objdump`, `nm`)
//!
//! One will always find the following (unmangled) symbols in `cortex-m-rt` applications:
//!
//! - `Reset`. This is the reset handler. The microcontroller will execute this function upon
//!   booting. This function will call the user program entry point (cf. [`#[entry]`][attr-entry])
//!   using the `main` symbol so you will also find that symbol in your program.
//!
//! - `DefaultHandler`. This is the default handler. If not overridden using `#[exception] fn
//!   DefaultHandler(..` this will be an infinite loop.
//!
//! - `HardFault` and `_HardFault`. These function handle the hard fault handling and what they
//!   do depends on whether the hard fault is overridden and whether the trampoline is enabled (which it is by default).
//!   - No override: Both are the same function. The function is an infinite loop defined in the cortex-m-rt crate.
//!   - Trampoline enabled: `HardFault` is the real hard fault handler defined in assembly. This function is simply a
//!     trampoline that jumps into the rust defined `_HardFault` function. This second function jumps to the user-defined
//!     handler with the exception frame as parameter. This second jump is usually optimised away with inlining.
//!   - Trampoline disabled: `HardFault` is the user defined function. This means the user function is called directly
//!     from the vector table. `_HardFault` still exists, but is an empty function that is purely there for compiler
//!     diagnostics.
//!
//! - `__STACK_START`. This is the first entry in the `.vector_table` section. This symbol contains
//!   the initial value of the stack pointer; this is where the stack will be located -- the stack
//!   grows downwards towards smaller addresses.
//!
//! - `__RESET_VECTOR`. This is the reset vector, a pointer to the `Reset` function. This vector
//!   is located in the `.vector_table` section after `__STACK_START`.
//!
//! - `__EXCEPTIONS`. This is the core exceptions portion of the vector table; it's an array of 14
//!   exception vectors, which includes exceptions like `HardFault` and `SysTick`. This array is
//!   located after `__RESET_VECTOR` in the `.vector_table` section.
//!
//! - `__INTERRUPTS`. This is the device specific interrupt portion of the vector table; its exact
//!   size depends on the target device but if the `"device"` feature has not been enabled it will
//!   have a size of 32 vectors (on ARMv6-M), 240 vectors (on ARMv7-M) or 496 vectors (on ARMv8-M).
//!   This array is located after `__EXCEPTIONS` in the `.vector_table` section.
//!
//! - `__pre_init`. This is a function to be run before RAM is initialized. It defaults to an empty
//!   function. As this runs before RAM is initialised, it is not sound to use a Rust function for
//!   `pre_init`, and instead it should typically be written in assembly using `global_asm` or an
//!   external assembly file.
//!
//! If you override any exception handler you'll find it as an unmangled symbol, e.g. `SysTick` or
//! `SVCall`, in the output of `objdump`,
//!
//! # Advanced usage
//!
//! ## Custom linker script
//!
//! To use your own linker script, ensure it is placed in the linker search path (for example in
//! the crate root or in Cargo's `OUT_DIR`) and use it with `-C link-arg=-Tmy_script.ld` instead
//! of the normal `-C link-arg=-Tlink.x`. The provided `link.x` may be used as a starting point
//! for customisation.
//!
//! ## Setting the program entry point
//!
//! This section describes how [`#[entry]`][attr-entry] is implemented. This information is useful
//! to developers who want to provide an alternative to [`#[entry]`][attr-entry] that provides extra
//! guarantees.
//!
//! The `Reset` handler will call a symbol named `main` (unmangled) *after* initializing `.bss` and
//! `.data`, and enabling the FPU (if the target has an FPU). A function with the `entry` attribute
//! will be set to have the export name "`main`"; in addition, its mutable statics are turned into
//! safe mutable references (see [`#[entry]`][attr-entry] for details).
//!
//! The unmangled `main` symbol must have signature `extern "C" fn() -> !` or its invocation from
//! `Reset`  will result in undefined behavior.
//!
//! ## Incorporating device specific interrupts
//!
//! This section covers how an external crate can insert device specific interrupt handlers into the
//! vector table. Most users don't need to concern themselves with these details, but if you are
//! interested in how PACs generated using `svd2rust` integrate with `cortex-m-rt` read on.
//!
//! The information in this section applies when the `"device"` feature has been enabled.
//!
//! ### `__INTERRUPTS`
//!
//! The external crate must provide the interrupts portion of the vector table via a `static`
//! variable named`__INTERRUPTS` (unmangled) that must be placed in the `.vector_table.interrupts`
//! section of its object file.
//!
//! This `static` variable will be placed at `ORIGIN(FLASH) + 0x40`. This address corresponds to the
//! spot where IRQ0 (IRQ number 0) is located.
//!
//! To conform to the Cortex-M ABI `__INTERRUPTS` must be an array of function pointers; some spots
//! in this array may need to be set to 0 if they are marked as *reserved* in the data sheet /
//! reference manual. We recommend using a `union` to set the reserved spots to `0`; `None`
//! (`Option<fn()>`) may also work but it's not guaranteed that the `None` variant will *always* be
//! represented by the value `0`.
//!
//! Let's illustrate with an artificial example where a device only has two interrupt: `Foo`, with
//! IRQ number = 2, and `Bar`, with IRQ number = 4.
//!
//! ```no_run
//! pub union Vector {
//!     handler: unsafe extern "C" fn(),
//!     reserved: usize,
//! }
//!
//! extern "C" {
//!     fn Foo();
//!     fn Bar();
//! }
//!
//! #[link_section = ".vector_table.interrupts"]
//! #[no_mangle]
//! pub static __INTERRUPTS: [Vector; 5] = [
//!     // 0-1: Reserved
//!     Vector { reserved: 0 },
//!     Vector { reserved: 0 },
//!
//!     // 2: Foo
//!     Vector { handler: Foo },
//!
//!     // 3: Reserved
//!     Vector { reserved: 0 },
//!
//!     // 4: Bar
//!     Vector { handler: Bar },
//! ];
//! ```
//!
//! ### `device.x`
//!
//! Linking in `__INTERRUPTS` creates a bunch of undefined references. If the user doesn't set a
//! handler for *all* the device specific interrupts then linking will fail with `"undefined
//! reference"` errors.
//!
//! We want to provide a default handler for all the interrupts while still letting the user
//! individually override each interrupt handler. In C projects, this is usually accomplished using
//! weak aliases declared in external assembly files. We use a similar solution via the `PROVIDE`
//! command in the linker script: when the `"device"` feature is enabled, `cortex-m-rt`'s linker
//! script (`link.x`) includes a linker script named `device.x`, which must be provided by
//! whichever crate provides `__INTERRUPTS`.
//!
//! For our running example the `device.x` linker script looks like this:
//!
//! ```text
//! /* device.x */
//! PROVIDE(Foo = DefaultHandler);
//! PROVIDE(Bar = DefaultHandler);
//! ```
//!
//! This weakly aliases both `Foo` and `Bar`. `DefaultHandler` is the default exception handler and
//! that the core exceptions use unless overridden.
//!
//! Because this linker script is provided by a dependency of the final application the dependency
//! must contain a build script that puts `device.x` somewhere the linker can find. An example of
//! such build script is shown below:
//!
//! ```ignore
//! use std::env;
//! use std::fs::File;
//! use std::io::Write;
//! use std::path::PathBuf;
//!
//! fn main() {
//!     // Put the linker script somewhere the linker can find it
//!     let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
//!     File::create(out.join("device.x"))
//!         .unwrap()
//!         .write_all(include_bytes!("device.x"))
//!         .unwrap();
//!     println!("cargo:rustc-link-search={}", out.display());
//! }
//! ```
//!
//! ## Uninitialized static variables
//!
//! The `.uninit` linker section can be used to leave `static mut` variables uninitialized. One use
//! case of unitialized static variables is to avoid zeroing large statically allocated buffers (say
//! to be used as thread stacks) -- this can considerably reduce initialization time on devices that
//! operate at low frequencies.
//!
//! The only correct way to use this section is with [`MaybeUninit`] types.
//!
//! [`MaybeUninit`]: https://doc.rust-lang.org/core/mem/union.MaybeUninit.html
//!
//! ```no_run,edition2018
//! # extern crate core;
//! use core::mem::MaybeUninit;
//!
//! const STACK_SIZE: usize = 8 * 1024;
//! const NTHREADS: usize = 4;
//!
//! #[link_section = ".uninit.STACKS"]
//! static mut STACKS: MaybeUninit<[[u8; STACK_SIZE]; NTHREADS]> = MaybeUninit::uninit();
//! ```
//!
//! Be very careful with the `link_section` attribute because it's easy to misuse in ways that cause
//! undefined behavior.
//!
//! ## Extra Sections
//!
//! Some microcontrollers provide additional memory regions beyond RAM and FLASH. For example,
//! some STM32 devices provide "CCM" or core-coupled RAM that is only accessible from the core. In
//! order to place variables in these sections using [`link_section`] attributes from your code,
//! you need to modify `memory.x` to declare the additional sections:
//!
//! [`link_section`]: https://doc.rust-lang.org/reference/abi.html#the-link_section-attribute
//!
//! ```text
//! MEMORY
//! {
//!     FLASH  (rx) : ORIGIN = 0x08000000, LENGTH = 1024K
//!     RAM    (rw) : ORIGIN = 0x20000000, LENGTH = 128K
//!     CCMRAM (rw) : ORIGIN = 0x10000000, LENGTH = 64K
//! }
//!
//! SECTIONS
//! {
//!     .ccmram (NOLOAD) : ALIGN(4)
//!     {
//!         *(.ccmram .ccmram.*);
//!         . = ALIGN(4);
//!     } > CCMRAM
//! }
//! ```
//!
//! You can then use something like this to place a variable into this specific section of memory:
//!
//! ```no_run,edition2018
//! # extern crate core;
//! # use core::mem::MaybeUninit;
//! #[link_section=".ccmram.BUFFERS"]
//! static mut BUF: MaybeUninit<[u8; 1024]> = MaybeUninit::uninit();
//! ```
//!
//! However, note that these sections are not initialised by cortex-m-rt, and so must be used
//! either with `MaybeUninit` types or you must otherwise arrange for them to be initialised
//! yourself, such as in `pre_init`.
//!
//! [attr-entry]: attr.entry.html
//! [attr-exception]: attr.exception.html
//! [attr-pre_init]: attr.pre_init.html
//!
//! # Minimum Supported Rust Version (MSRV)
//!
//! The MSRV of this release is Rust 1.61.0.

// # Developer notes
//
// - `link_section` is used to place symbols in specific places of the final binary. The names used
// here will appear in the linker script (`link.x`) in conjunction with the `KEEP` command.

#![deny(missing_docs)]
#![no_std]

extern crate cortex_m_rt_macros as macros;

/// The 32-bit value the stack is painted with before the program runs.
// Note: keep this value in-sync with the start-up assembly code, as we can't
// use const values in `global_asm!` yet.
#[cfg(feature = "paint-stack")]
pub const STACK_PAINT_VALUE: u32 = 0xcccc_cccc;

#[cfg(cortex_m)]
use core::arch::global_asm;
use core::fmt;

/// Parse cfg attributes inside a global_asm call.
#[cfg(cortex_m)]
macro_rules! cfg_global_asm {
    {@inner, [$($x:tt)*], } => {
        global_asm!{$($x)*}
    };
    (@inner, [$($x:tt)*], #[cfg($meta:meta)] $asm:literal, $($rest:tt)*) => {
        #[cfg($meta)]
        cfg_global_asm!{@inner, [$($x)* $asm,], $($rest)*}
        #[cfg(not($meta))]
        cfg_global_asm!{@inner, [$($x)*], $($rest)*}
    };
    {@inner, [$($x:tt)*], $asm:literal, $($rest:tt)*} => {
        cfg_global_asm!{@inner, [$($x)* $asm,], $($rest)*}
    };
    {$($asms:tt)*} => {
        cfg_global_asm!{@inner, [], $($asms)*}
    };
}

// This reset vector is the initial entry point after a system reset.
// Calls an optional user-provided __pre_init and then initialises RAM.
// If the target has an FPU, it is enabled.
// Finally jumps to the user main function.
#[cfg(cortex_m)]
cfg_global_asm! {
    ".cfi_sections .debug_frame
     .section .Reset, \"ax\"
     .global Reset
     .type Reset,%function
     .thumb_func",
    ".cfi_startproc
     Reset:",

    // If enabled, initialise the SP. This is normally initialised by the CPU itself or by a
    // bootloader, but some debuggers fail to set it when resetting the target, leading to
    // stack corruptions.
    #[cfg(feature = "set-sp")]
    "ldr r0, =_stack_start
     msr msp, r0",

    // If enabled, initialise VTOR to the start of the vector table. This is normally initialised
    // by a bootloader when the non-reset value is required, but some bootloaders do not set it,
    // leading to frustrating issues where everything seems to work but interrupts are never
    // handled. The VTOR register is optional on ARMv6-M, but when not present is RAZ,WI and
    // therefore safe to write to.
    #[cfg(feature = "set-vtor")]
    "ldr r0, =0xe000ed08
     ldr r1, =__vector_table
     str r1, [r0]",

    // Run user pre-init code which must be executed immediately after startup, before the
    // potentially time-consuming memory initialisation takes place.
    // Example use cases include disabling default watchdogs or enabling RAM.
    "bl __pre_init",

    // If enabled, initialize RAM with zeros. This is not usually required, but might be necessary
    // to properly initialize checksum-based memory integrity measures on safety-critical hardware.
    #[cfg(feature = "zero-init-ram")]
    "ldr r0, =_ram_start
     ldr r1, =_ram_end
     movs r2, #0
     0:
     cmp r1, r0
     beq 1f
     stm r0!, {{r2}}
     b 0b
     1:",

    // Initialise .bss memory. `__sbss` and `__ebss` come from the linker script.
    #[cfg(not(feature = "zero-init-ram"))]
    "ldr r0, =__sbss
     ldr r1, =__ebss
     movs r2, #0
     0:
     cmp r1, r0
     beq 1f
     stm r0!, {{r2}}
     b 0b
     1:",

    // If enabled, paint stack/heap RAM with 0xcccccccc.
    // `__sheap` and `_stack_start` come from the linker script.
    #[cfg(feature = "paint-stack")]
    "ldr r0, =__sheap
     ldr r1, =_stack_start
     ldr r2, =0xcccccccc // This must match STACK_PAINT_VALUE
     0:
     cmp r1, r0
     beq 1f
     stm r0!, {{r2}}
     b 0b
     1:",

    // Initialise .data memory. `__sdata`, `__sidata`, and `__edata` come from the linker script.
    "ldr r0, =__sdata
     ldr r1, =__edata
     ldr r2, =__sidata
     0:
     cmp r1, r0
     beq 1f
     ldm r2!, {{r3}}
     stm r0!, {{r3}}
     b 0b
     1:",

    // Potentially enable an FPU.
    // SCB.CPACR is 0xE000_ED88.
    // We enable access to CP10 and CP11 from priviliged and unprivileged mode.
    #[cfg(has_fpu)]
    "ldr r0, =0xE000ED88
     ldr r1, =(0b1111 << 20)
     ldr r2, [r0]
     orr r2, r2, r1
     str r2, [r0]
     dsb
     isb",

    // Jump to user main function.
    // `bl` is used for the extended range, but the user main function should not return,
    // so trap on any unexpected return.
    "bl main
     udf #0",

    ".cfi_endproc
     .size Reset, . - Reset",
}

/// Attribute to declare an interrupt (AKA device-specific exception) handler
///
/// **NOTE**: This attribute is exposed by `cortex-m-rt` only when the `device` feature is enabled.
/// However, that export is not meant to be used directly -- using it will result in a compilation
/// error. You should instead use the PAC (usually generated using `svd2rust`) re-export of
/// that attribute. You need to use the re-export to have the compiler check that the interrupt
/// exists on the target device.
///
/// # Syntax
///
/// ``` ignore
/// extern crate device;
///
/// // the attribute comes from the PAC not from cortex-m-rt
/// use device::interrupt;
///
/// #[interrupt]
/// fn USART1() {
///     // ..
/// }
/// ```
///
/// where the name of the function must be one of the device interrupts.
///
/// # Usage
///
/// `#[interrupt] fn Name(..` overrides the default handler for the interrupt with the given `Name`.
/// These handlers must have signature `[unsafe] fn() [-> !]`. It's possible to add state to these
/// handlers by declaring `static mut` variables at the beginning of the body of the function. These
/// variables will be safe to access from the function body.
///
/// If the interrupt handler has not been overridden it will be dispatched by the default exception
/// handler (`DefaultHandler`).
///
/// # Properties
///
/// Interrupts handlers can only be called by the hardware. Other parts of the program can't refer
/// to the interrupt handlers, much less invoke them as if they were functions.
///
/// `static mut` variables declared within an interrupt handler are safe to access and can be used
/// to preserve state across invocations of the handler. The compiler can't prove this is safe so
/// the attribute will help by making a transformation to the source code: for this reason a
/// variable like `static mut FOO: u32` will become `let FOO: &mut u32;`.
///
/// # Examples
///
/// - Using state within an interrupt handler
///
/// ``` ignore
/// extern crate device;
///
/// use device::interrupt;
///
/// #[interrupt]
/// fn TIM2() {
///     static mut COUNT: i32 = 0;
///
///     // `COUNT` is safe to access and has type `&mut i32`
///     *COUNT += 1;
///
///     println!("{}", COUNT);
/// }
/// ```
#[cfg(feature = "device")]
pub use macros::interrupt;

/// Attribute to declare the entry point of the program
///
/// The specified function will be called by the reset handler *after* RAM has been initialized. In
/// the case of the `thumbv7em-none-eabihf` target the FPU will also be enabled before the function
/// is called.
///
/// The type of the specified function must be `[unsafe] fn() -> !` (never ending function)
///
/// # Properties
///
/// The entry point will be called by the reset handler. The program can't reference to the entry
/// point, much less invoke it.
///
/// `static mut` variables declared within the entry point are safe to access. The compiler can't
/// prove this is safe so the attribute will help by making a transformation to the source code: for
/// this reason a variable like `static mut FOO: u32` will become `let FOO: &'static mut u32;`. Note
/// that `&'static mut` references have move semantics.
///
/// # Examples
///
/// - Simple entry point
///
/// ``` no_run
/// # #![no_main]
/// # use cortex_m_rt::entry;
/// #[entry]
/// fn main() -> ! {
///     loop {
///         /* .. */
///     }
/// }
/// ```
///
/// - `static mut` variables local to the entry point are safe to modify.
///
/// ``` no_run
/// # #![no_main]
/// # use cortex_m_rt::entry;
/// #[entry]
/// fn main() -> ! {
///     static mut FOO: u32 = 0;
///
///     let foo: &'static mut u32 = FOO;
///     assert_eq!(*foo, 0);
///     *foo = 1;
///     assert_eq!(*foo, 1);
///
///     loop {
///         /* .. */
///     }
/// }
/// ```
pub use macros::entry;

/// Attribute to declare an exception handler
///
/// # Syntax
///
/// ```
/// # use cortex_m_rt::exception;
/// #[exception]
/// fn SysTick() {
///     // ..
/// }
///
/// # fn main() {}
/// ```
///
/// where the name of the function must be one of:
///
/// - `DefaultHandler`
/// - `NonMaskableInt`
/// - `HardFault`
/// - `MemoryManagement` (a)
/// - `BusFault` (a)
/// - `UsageFault` (a)
/// - `SecureFault` (b)
/// - `SVCall`
/// - `DebugMonitor` (a)
/// - `PendSV`
/// - `SysTick`
///
/// (a) Not available on Cortex-M0 variants (`thumbv6m-none-eabi`)
///
/// (b) Only available on ARMv8-M
///
/// # Usage
///
/// ## HardFault handler
///
/// `#[exception(trampoline = true)] unsafe fn HardFault(..` sets the hard fault handler.
/// If the trampoline parameter is set to true, the handler must have signature `unsafe fn(&ExceptionFrame) -> !`.
/// If set to false, the handler must have signature `unsafe fn() -> !`.
///
/// This handler is not allowed to return as that can cause undefined behavior.
///
/// To maintain backwards compatibility the attribute can be used without trampoline parameter (`#[exception]`),
/// which sets the trampoline to true.
///
/// ## Default handler
///
/// `#[exception] unsafe fn DefaultHandler(..` sets the *default* handler. All exceptions which have
/// not been assigned a handler will be serviced by this handler. This handler must have signature
/// `unsafe fn(irqn: i16) [-> !]`. `irqn` is the IRQ number (See CMSIS); `irqn` will be a negative
/// number when the handler is servicing a core exception; `irqn` will be a positive number when the
/// handler is servicing a device specific exception (interrupt).
///
/// ## Other handlers
///
/// `#[exception] fn Name(..` overrides the default handler for the exception with the given `Name`.
/// These handlers must have signature `[unsafe] fn() [-> !]`. When overriding these other exception
/// it's possible to add state to them by declaring `static mut` variables at the beginning of the
/// body of the function. These variables will be safe to access from the function body.
///
/// # Properties
///
/// Exception handlers can only be called by the hardware. Other parts of the program can't refer to
/// the exception handlers, much less invoke them as if they were functions.
///
/// `static mut` variables declared within an exception handler are safe to access and can be used
/// to preserve state across invocations of the handler. The compiler can't prove this is safe so
/// the attribute will help by making a transformation to the source code: for this reason a
/// variable like `static mut FOO: u32` will become `let FOO: &mut u32;`.
///
/// # Safety
///
/// It is not generally safe to register handlers for non-maskable interrupts. On Cortex-M,
/// `HardFault` is non-maskable (at least in general), and there is an explicitly non-maskable
/// interrupt `NonMaskableInt`.
///
/// The reason for that is that non-maskable interrupts will preempt any currently running function,
/// even if that function executes within a critical section. Thus, if it was safe to define NMI
/// handlers, critical sections wouldn't work safely anymore.
///
/// This also means that defining a `DefaultHandler` must be unsafe, as that will catch
/// `NonMaskableInt` and `HardFault` if no handlers for those are defined.
///
/// The safety requirements on those handlers is as follows: The handler must not access any data
/// that is protected via a critical section and shared with other interrupts that may be preempted
/// by the NMI while holding the critical section. As long as this requirement is fulfilled, it is
/// safe to handle NMIs.
///
/// # Examples
///
/// - Setting the default handler
///
/// ```
/// use cortex_m_rt::exception;
///
/// #[exception]
/// unsafe fn DefaultHandler(irqn: i16) {
///     println!("IRQn = {}", irqn);
/// }
///
/// # fn main() {}
/// ```
///
/// - Overriding the `SysTick` handler
///
/// ```
/// use cortex_m_rt::exception;
///
/// #[exception]
/// fn SysTick() {
///     static mut COUNT: i32 = 0;
///
///     // `COUNT` is safe to access and has type `&mut i32`
///     *COUNT += 1;
///
///     println!("{}", COUNT);
/// }
///
/// # fn main() {}
/// ```
pub use macros::exception;

/// Attribute to mark which function will be called at the beginning of the reset handler.
///
/// **IMPORTANT**: This attribute can appear at most *once* in the dependency graph.
///
/// The function must have the signature of `unsafe fn()`.
///
/// # Safety
///
/// The function will be called before memory is initialized, as soon as possible after reset. Any
/// access of memory, including any static variables, will result in undefined behavior.
///
/// **Warning**: Due to [rvalue static promotion][rfc1414] static variables may be accessed whenever
/// taking a reference to a constant. This means that even trivial expressions such as `&1` in the
/// `#[pre_init]` function *or any code called by it* will cause **immediate undefined behavior**.
///
/// Users are advised to only use the `#[pre_init]` feature when absolutely necessary as these
/// constraints make safe usage difficult.
///
/// # Examples
///
/// ```
/// # use cortex_m_rt::pre_init;
/// #[pre_init]
/// unsafe fn before_main() {
///     // do something here
/// }
///
/// # fn main() {}
/// ```
///
/// [rfc1414]: https://github.com/rust-lang/rfcs/blob/master/text/1414-rvalue_static_promotion.md
pub use macros::pre_init;

// We export this static with an informative name so that if an application attempts to link
// two copies of cortex-m-rt together, linking will fail. We also declare a links key in
// Cargo.toml which is the more modern way to solve the same problem, but we have to keep
// __ONCE__ around to prevent linking with versions before the links key was added.
#[export_name = "error: cortex-m-rt appears more than once in the dependency graph"]
#[doc(hidden)]
pub static __ONCE__: () = ();

/// Registers stacked (pushed onto the stack) during an exception.
#[derive(Clone, Copy)]
#[repr(C)]
#[allow(dead_code)]
pub struct ExceptionFrame {
    r0: u32,
    r1: u32,
    r2: u32,
    r3: u32,
    r12: u32,
    lr: u32,
    pc: u32,
    xpsr: u32,
}

impl ExceptionFrame {
    /// Returns the value of (general purpose) register 0.
    #[inline(always)]
    pub fn r0(&self) -> u32 {
        self.r0
    }

    /// Returns the value of (general purpose) register 1.
    #[inline(always)]
    pub fn r1(&self) -> u32 {
        self.r1
    }

    /// Returns the value of (general purpose) register 2.
    #[inline(always)]
    pub fn r2(&self) -> u32 {
        self.r2
    }

    /// Returns the value of (general purpose) register 3.
    #[inline(always)]
    pub fn r3(&self) -> u32 {
        self.r3
    }

    /// Returns the value of (general purpose) register 12.
    #[inline(always)]
    pub fn r12(&self) -> u32 {
        self.r12
    }

    /// Returns the value of the Link Register.
    #[inline(always)]
    pub fn lr(&self) -> u32 {
        self.lr
    }

    /// Returns the value of the Program Counter.
    #[inline(always)]
    pub fn pc(&self) -> u32 {
        self.pc
    }

    /// Returns the value of the Program Status Register.
    #[inline(always)]
    pub fn xpsr(&self) -> u32 {
        self.xpsr
    }

    /// Sets the stacked value of (general purpose) register 0.
    ///
    /// # Safety
    ///
    /// This affects the `r0` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_r0(&mut self, value: u32) {
        self.r0 = value;
    }

    /// Sets the stacked value of (general purpose) register 1.
    ///
    /// # Safety
    ///
    /// This affects the `r1` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_r1(&mut self, value: u32) {
        self.r1 = value;
    }

    /// Sets the stacked value of (general purpose) register 2.
    ///
    /// # Safety
    ///
    /// This affects the `r2` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_r2(&mut self, value: u32) {
        self.r2 = value;
    }

    /// Sets the stacked value of (general purpose) register 3.
    ///
    /// # Safety
    ///
    /// This affects the `r3` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_r3(&mut self, value: u32) {
        self.r3 = value;
    }

    /// Sets the stacked value of (general purpose) register 12.
    ///
    /// # Safety
    ///
    /// This affects the `r12` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_r12(&mut self, value: u32) {
        self.r12 = value;
    }

    /// Sets the stacked value of the Link Register.
    ///
    /// # Safety
    ///
    /// This affects the `lr` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_lr(&mut self, value: u32) {
        self.lr = value;
    }

    /// Sets the stacked value of the Program Counter.
    ///
    /// # Safety
    ///
    /// This affects the `pc` register of the preempted code, which must not rely on it getting
    /// restored to its previous value.
    #[inline(always)]
    pub unsafe fn set_pc(&mut self, value: u32) {
        self.pc = value;
    }

    /// Sets the stacked value of the Program Status Register.
    ///
    /// # Safety
    ///
    /// This affects the `xPSR` registers (`IPSR`, `APSR`, and `EPSR`) of the preempted code, which
    /// must not rely on them getting restored to their previous value.
    #[inline(always)]
    pub unsafe fn set_xpsr(&mut self, value: u32) {
        self.xpsr = value;
    }
}

impl fmt::Debug for ExceptionFrame {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        struct Hex(u32);
        impl fmt::Debug for Hex {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                write!(f, "0x{:08x}", self.0)
            }
        }
        f.debug_struct("ExceptionFrame")
            .field("r0", &Hex(self.r0))
            .field("r1", &Hex(self.r1))
            .field("r2", &Hex(self.r2))
            .field("r3", &Hex(self.r3))
            .field("r12", &Hex(self.r12))
            .field("lr", &Hex(self.lr))
            .field("pc", &Hex(self.pc))
            .field("xpsr", &Hex(self.xpsr))
            .finish()
    }
}

/// Returns a pointer to the start of the heap
///
/// The returned pointer is guaranteed to be 4-byte aligned.
#[inline]
pub fn heap_start() -> *mut u32 {
    extern "C" {
        static mut __sheap: u32;
    }

    #[allow(unused_unsafe)] // no longer unsafe since rust 1.82.0
    unsafe {
        core::ptr::addr_of_mut!(__sheap)
    }
}

// Entry point is Reset.
#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".vector_table.reset_vector")]
#[no_mangle]
pub static __RESET_VECTOR: unsafe extern "C" fn() -> ! = Reset;

#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".HardFault.default")]
#[no_mangle]
pub unsafe extern "C" fn HardFault_() -> ! {
    #[allow(clippy::empty_loop)]
    loop {}
}

#[doc(hidden)]
#[no_mangle]
pub unsafe extern "C" fn DefaultHandler_() -> ! {
    #[allow(clippy::empty_loop)]
    loop {}
}

#[doc(hidden)]
#[no_mangle]
pub unsafe extern "C" fn DefaultPreInit() {}

/* Exceptions */
#[doc(hidden)]
pub enum Exception {
    NonMaskableInt,

    // Not overridable
    // HardFault,
    #[cfg(not(armv6m))]
    MemoryManagement,

    #[cfg(not(armv6m))]
    BusFault,

    #[cfg(not(armv6m))]
    UsageFault,

    #[cfg(armv8m)]
    SecureFault,

    SVCall,

    #[cfg(not(armv6m))]
    DebugMonitor,

    PendSV,

    SysTick,
}

#[doc(hidden)]
pub use self::Exception as exception;

extern "C" {
    fn Reset() -> !;

    fn NonMaskableInt();

    fn HardFault();

    #[cfg(not(armv6m))]
    fn MemoryManagement();

    #[cfg(not(armv6m))]
    fn BusFault();

    #[cfg(not(armv6m))]
    fn UsageFault();

    #[cfg(armv8m)]
    fn SecureFault();

    fn SVCall();

    #[cfg(not(armv6m))]
    fn DebugMonitor();

    fn PendSV();

    fn SysTick();
}

#[doc(hidden)]
#[repr(C)]
pub union Vector {
    handler: unsafe extern "C" fn(),
    reserved: usize,
}

#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".vector_table.exceptions")]
#[no_mangle]
pub static __EXCEPTIONS: [Vector; 14] = [
    // Exception 2: Non Maskable Interrupt.
    Vector {
        handler: NonMaskableInt,
    },
    // Exception 3: Hard Fault Interrupt.
    Vector { handler: HardFault },
    // Exception 4: Memory Management Interrupt [not on Cortex-M0 variants].
    #[cfg(not(armv6m))]
    Vector {
        handler: MemoryManagement,
    },
    #[cfg(armv6m)]
    Vector { reserved: 0 },
    // Exception 5: Bus Fault Interrupt [not on Cortex-M0 variants].
    #[cfg(not(armv6m))]
    Vector { handler: BusFault },
    #[cfg(armv6m)]
    Vector { reserved: 0 },
    // Exception 6: Usage Fault Interrupt [not on Cortex-M0 variants].
    #[cfg(not(armv6m))]
    Vector {
        handler: UsageFault,
    },
    #[cfg(armv6m)]
    Vector { reserved: 0 },
    // Exception 7: Secure Fault Interrupt [only on Armv8-M].
    #[cfg(armv8m)]
    Vector {
        handler: SecureFault,
    },
    #[cfg(not(armv8m))]
    Vector { reserved: 0 },
    // 8-10: Reserved
    Vector { reserved: 0 },
    Vector { reserved: 0 },
    Vector { reserved: 0 },
    // Exception 11: SV Call Interrupt.
    Vector { handler: SVCall },
    // Exception 12: Debug Monitor Interrupt [not on Cortex-M0 variants].
    #[cfg(not(armv6m))]
    Vector {
        handler: DebugMonitor,
    },
    #[cfg(armv6m)]
    Vector { reserved: 0 },
    // 13: Reserved
    Vector { reserved: 0 },
    // Exception 14: Pend SV Interrupt [not on Cortex-M0 variants].
    Vector { handler: PendSV },
    // Exception 15: System Tick Interrupt.
    Vector { handler: SysTick },
];

// If we are not targeting a specific device we bind all the potential device specific interrupts
// to the default handler
#[cfg(all(any(not(feature = "device"), test), not(armv6m), not(armv8m)))]
#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".vector_table.interrupts")]
#[no_mangle]
pub static __INTERRUPTS: [unsafe extern "C" fn(); 240] = [{
    extern "C" {
        fn DefaultHandler();
    }

    DefaultHandler
}; 240];

// ARMv8-M can have up to 496 device specific interrupts
#[cfg(all(not(feature = "device"), armv8m))]
#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".vector_table.interrupts")]
#[no_mangle]
pub static __INTERRUPTS: [unsafe extern "C" fn(); 496] = [{
    extern "C" {
        fn DefaultHandler();
    }

    DefaultHandler
}; 496];

// ARMv6-M can only have a maximum of 32 device specific interrupts
#[cfg(all(not(feature = "device"), armv6m))]
#[doc(hidden)]
#[link_section = ".vector_table.interrupts"]
#[no_mangle]
pub static __INTERRUPTS: [unsafe extern "C" fn(); 32] = [{
    extern "C" {
        fn DefaultHandler();
    }

    DefaultHandler
}; 32];