cortex_m_rt/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
//! Startup code and minimal runtime for Cortex-M microcontrollers
//!
//! This crate contains all the required parts to build a `no_std` application (binary crate) that
//! targets a Cortex-M microcontroller.
//!
//! # Features
//!
//! This crates takes care of:
//!
//! - The memory layout of the program. In particular, it populates the vector table so the device
//! can boot correctly, and properly dispatch exceptions and interrupts.
//!
//! - Initializing `static` variables before the program entry point.
//!
//! - Enabling the FPU before the program entry point if the target is `-eabihf`.
//!
//! This crate also provides the following attributes:
//!
//! - [`#[entry]`][attr-entry] to declare the entry point of the program
//! - [`#[exception]`][attr-exception] to override an exception handler. If not overridden all
//! exception handlers default to an infinite loop.
//!
//! This crate also implements a related attribute called `#[interrupt]`, which allows you
//! to define interrupt handlers. However, since which interrupts are available depends on the
//! microcontroller in use, this attribute should be re-exported and used from a peripheral
//! access crate (PAC).
//!
//! A [`#[pre_init]`][attr-pre_init] macro is also provided to run a function before RAM
//! initialisation, but its use is deprecated as it is not defined behaviour to execute Rust
//! code before initialisation. It is still possible to create a custom `pre_init` function
//! using assembly.
//!
//! The documentation for these attributes can be found in the [Attribute Macros](#attributes)
//! section.
//!
//! # Requirements
//!
//! ## `memory.x`
//!
//! This crate expects the user, or some other crate, to provide the memory layout of the target
//! device via a linker script named `memory.x`, described in this section. The `memory.x` file is
//! used during linking by the `link.x` script provided by this crate. If you are using a custom
//! linker script, you do not need a `memory.x` file.
//!
//! ### `MEMORY`
//!
//! The linker script must specify the memory available in the device as, at least, two `MEMORY`
//! regions: one named `FLASH` and one named `RAM`. The `.text` and `.rodata` sections of the
//! program will be placed in the `FLASH` region, whereas the `.bss` and `.data` sections, as well
//! as the heap, will be placed in the `RAM` region.
//!
//! ```text
//! /* Linker script for the STM32F103C8T6 */
//! MEMORY
//! {
//! FLASH : ORIGIN = 0x08000000, LENGTH = 64K
//! RAM : ORIGIN = 0x20000000, LENGTH = 20K
//! }
//! ```
//!
//! ### `_stack_start` / `_stack_end`
//!
//! The `_stack_start` optional symbol can be used to indicate where the call stack of the program
//! should be placed. If this symbol is not used then the stack will be placed at the *end* of the
//! `RAM` region -- the stack grows downwards towards smaller address. This is generally a sensible
//! default and most applications will not need to specify `_stack_start`. The same goes for
//! `_stack_end` which is automatically placed after the end of statically allocated RAM.
//!
//! **NOTE:** If you change `_stack_start`, make sure to also set `_stack_end` correctly to match
//! new stack area if you are using it, e.g for MSPLIM. The `_stack_end` is not used internally by
//! `cortex-m-rt` and is only for application use.
//!
//! For Cortex-M, the `_stack_start` must always be aligned to 8 bytes, which is enforced by
//! the linker script. If you override it, ensure that whatever value you set is a multiple
//! of 8 bytes. The `_stack_end` is aligned to 4 bytes.
//!
//! This symbol can be used to place the stack in a different memory region, for example:
//!
//! ```text
//! /* Linker script for the STM32F303VCT6 with stack in CCM */
//! MEMORY
//! {
//! FLASH : ORIGIN = 0x08000000, LENGTH = 256K
//!
//! /* .bss, .data and the heap go in this region */
//! RAM : ORIGIN = 0x20000000, LENGTH = 40K
//!
//! /* Core coupled (faster) RAM dedicated to hold the stack */
//! CCRAM : ORIGIN = 0x10000000, LENGTH = 8K
//! }
//!
//! _stack_start = ORIGIN(CCRAM) + LENGTH(CCRAM);
//! _stack_end = ORIGIN(CCRAM); /* Optional, add if used by the application */
//! ```
//!
//! ### `_stext`
//!
//! This optional symbol can be used to control where the `.text` section is placed. If omitted the
//! `.text` section will be placed right after the vector table, which is placed at the beginning of
//! `FLASH`. Some devices store settings like Flash configuration right after the vector table;
//! for these devices one must place the `.text` section after this configuration section --
//! `_stext` can be used for this purpose.
//!
//! ```text
//! MEMORY
//! {
//! /* .. */
//! }
//!
//! /* The device stores Flash configuration in 0x400-0x40C so we place .text after that */
//! _stext = ORIGIN(FLASH) + 0x40C
//! ```
//!
//! # An example
//!
//! This section presents a minimal application built on top of `cortex-m-rt`. Apart from the
//! mandatory `memory.x` linker script describing the memory layout of the device, the hard fault
//! handler and the default exception handler must also be defined somewhere in the dependency
//! graph (see [`#[exception]`]). In this example we define them in the binary crate:
//!
//! ```no_run
//! #![no_main]
//! #![no_std]
//!
//! // Some panic handler needs to be included. This one halts the processor on panic.
//! use panic_halt as _;
//!
//! use cortex_m_rt::entry;
//!
//! // Use `main` as the entry point of this application, which may not return.
//! #[entry]
//! fn main() -> ! {
//! // initialization
//!
//! loop {
//! // application logic
//! }
//! }
//! ```
//!
//! To actually build this program you need to place a `memory.x` linker script somewhere the linker
//! can find it, e.g. in the current directory; and then link the program using `cortex-m-rt`'s
//! linker script: `link.x`. The required steps are shown below:
//!
//! ```text
//! $ cat > memory.x <<EOF
//! MEMORY
//! {
//! FLASH : ORIGIN = 0x08000000, LENGTH = 64K
//! RAM : ORIGIN = 0x20000000, LENGTH = 20K
//! }
//! EOF
//!
//! $ cargo rustc --target thumbv7m-none-eabi -- -C link-arg=-nostartfiles -C link-arg=-Tlink.x
//!
//! $ file target/thumbv7m-none-eabi/debug/app
//! app: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), statically linked, (..)
//! ```
//!
//! # Optional features
//!
//! ## `device`
//!
//! If this feature is disabled then this crate populates the whole vector table. All the interrupts
//! in the vector table, even the ones unused by the target device, will be bound to the default
//! exception handler. This makes the final application device agnostic: you will be able to run it
//! on any Cortex-M device -- provided that you correctly specified its memory layout in `memory.x`
//! -- without hitting undefined behavior.
//!
//! If this feature is enabled then the interrupts section of the vector table is left unpopulated
//! and some other crate, or the user, will have to populate it. This mode is meant to be used in
//! conjunction with crates generated using `svd2rust`. Those peripheral access crates, or PACs,
//! will populate the missing part of the vector table when their `"rt"` feature is enabled.
//!
//! ## `set-sp`
//!
//! If this feature is enabled, the stack pointer (SP) is initialised in the reset handler to the
//! `_stack_start` value from the linker script. This is not usually required, but some debuggers
//! do not initialise SP when performing a soft reset, which can lead to stack corruption.
//!
//! ## `set-vtor`
//!
//! If this feature is enabled, the vector table offset register (VTOR) is initialised in the reset
//! handler to the start of the vector table defined in the linker script. This is not usually
//! required, but some bootloaders do not set VTOR before jumping to application code, leading to
//! your main function executing but interrupt handlers not being used.
//!
//! ## `zero-init-ram`
//!
//! If this feature is enabled, RAM is initialized with zeros during startup from the `_ram_start`
//! value to the `_ram_end` value from the linker script. This is not usually required, but might be
//! necessary to properly initialize memory integrity measures on some hardware.
//!
//! ## `paint-stack`
//!
//! Everywhere between `__sheap` and `_stack_start` is painted with the fixed value
//! `STACK_PAINT_VALUE`, which is `0xCCCC_CCCC`.
//! You can then inspect memory during debugging to determine how much of the stack has been used -
//! where the stack has been used the 'paint' will have been 'scrubbed off' and the memory will
//! have a value other than `STACK_PAINT_VALUE`.
//!
//! # Inspection
//!
//! This section covers how to inspect a binary that builds on top of `cortex-m-rt`.
//!
//! ## Sections (`size`)
//!
//! `cortex-m-rt` uses standard sections like `.text`, `.rodata`, `.bss` and `.data` as one would
//! expect. `cortex-m-rt` separates the vector table in its own section, named `.vector_table`. This
//! lets you distinguish how much space is taking the vector table in Flash vs how much is being
//! used by actual instructions (`.text`) and constants (`.rodata`).
//!
//! ```text
//! $ size -Ax target/thumbv7m-none-eabi/examples/app
//! target/thumbv7m-none-eabi/release/examples/app :
//! section size addr
//! .vector_table 0x400 0x8000000
//! .text 0x88 0x8000400
//! .rodata 0x0 0x8000488
//! .data 0x0 0x20000000
//! .bss 0x0 0x20000000
//! ```
//!
//! Without the `-A` argument `size` reports the sum of the sizes of `.text`, `.rodata` and
//! `.vector_table` under "text".
//!
//! ```text
//! $ size target/thumbv7m-none-eabi/examples/app
//! text data bss dec hex filename
//! 1160 0 0 1660 67c target/thumbv7m-none-eabi/release/app
//! ```
//!
//! ## Symbols (`objdump`, `nm`)
//!
//! One will always find the following (unmangled) symbols in `cortex-m-rt` applications:
//!
//! - `Reset`. This is the reset handler. The microcontroller will execute this function upon
//! booting. This function will call the user program entry point (cf. [`#[entry]`][attr-entry])
//! using the `main` symbol so you will also find that symbol in your program.
//!
//! - `DefaultHandler`. This is the default handler. If not overridden using `#[exception] fn
//! DefaultHandler(..` this will be an infinite loop.
//!
//! - `HardFault` and `_HardFault`. These function handle the hard fault handling and what they
//! do depends on whether the hard fault is overridden and whether the trampoline is enabled (which it is by default).
//! - No override: Both are the same function. The function is an infinite loop defined in the cortex-m-rt crate.
//! - Trampoline enabled: `HardFault` is the real hard fault handler defined in assembly. This function is simply a
//! trampoline that jumps into the rust defined `_HardFault` function. This second function jumps to the user-defined
//! handler with the exception frame as parameter. This second jump is usually optimised away with inlining.
//! - Trampoline disabled: `HardFault` is the user defined function. This means the user function is called directly
//! from the vector table. `_HardFault` still exists, but is an empty function that is purely there for compiler
//! diagnostics.
//!
//! - `__STACK_START`. This is the first entry in the `.vector_table` section. This symbol contains
//! the initial value of the stack pointer; this is where the stack will be located -- the stack
//! grows downwards towards smaller addresses.
//!
//! - `__RESET_VECTOR`. This is the reset vector, a pointer to the `Reset` function. This vector
//! is located in the `.vector_table` section after `__STACK_START`.
//!
//! - `__EXCEPTIONS`. This is the core exceptions portion of the vector table; it's an array of 14
//! exception vectors, which includes exceptions like `HardFault` and `SysTick`. This array is
//! located after `__RESET_VECTOR` in the `.vector_table` section.
//!
//! - `__INTERRUPTS`. This is the device specific interrupt portion of the vector table; its exact
//! size depends on the target device but if the `"device"` feature has not been enabled it will
//! have a size of 32 vectors (on ARMv6-M), 240 vectors (on ARMv7-M) or 496 vectors (on ARMv8-M).
//! This array is located after `__EXCEPTIONS` in the `.vector_table` section.
//!
//! - `__pre_init`. This is a function to be run before RAM is initialized. It defaults to an empty
//! function. As this runs before RAM is initialised, it is not sound to use a Rust function for
//! `pre_init`, and instead it should typically be written in assembly using `global_asm` or an
//! external assembly file.
//!
//! If you override any exception handler you'll find it as an unmangled symbol, e.g. `SysTick` or
//! `SVCall`, in the output of `objdump`,
//!
//! # Advanced usage
//!
//! ## Custom linker script
//!
//! To use your own linker script, ensure it is placed in the linker search path (for example in
//! the crate root or in Cargo's `OUT_DIR`) and use it with `-C link-arg=-Tmy_script.ld` instead
//! of the normal `-C link-arg=-Tlink.x`. The provided `link.x` may be used as a starting point
//! for customisation.
//!
//! ## Setting the program entry point
//!
//! This section describes how [`#[entry]`][attr-entry] is implemented. This information is useful
//! to developers who want to provide an alternative to [`#[entry]`][attr-entry] that provides extra
//! guarantees.
//!
//! The `Reset` handler will call a symbol named `main` (unmangled) *after* initializing `.bss` and
//! `.data`, and enabling the FPU (if the target has an FPU). A function with the `entry` attribute
//! will be set to have the export name "`main`"; in addition, its mutable statics are turned into
//! safe mutable references (see [`#[entry]`][attr-entry] for details).
//!
//! The unmangled `main` symbol must have signature `extern "C" fn() -> !` or its invocation from
//! `Reset` will result in undefined behavior.
//!
//! ## Incorporating device specific interrupts
//!
//! This section covers how an external crate can insert device specific interrupt handlers into the
//! vector table. Most users don't need to concern themselves with these details, but if you are
//! interested in how PACs generated using `svd2rust` integrate with `cortex-m-rt` read on.
//!
//! The information in this section applies when the `"device"` feature has been enabled.
//!
//! ### `__INTERRUPTS`
//!
//! The external crate must provide the interrupts portion of the vector table via a `static`
//! variable named`__INTERRUPTS` (unmangled) that must be placed in the `.vector_table.interrupts`
//! section of its object file.
//!
//! This `static` variable will be placed at `ORIGIN(FLASH) + 0x40`. This address corresponds to the
//! spot where IRQ0 (IRQ number 0) is located.
//!
//! To conform to the Cortex-M ABI `__INTERRUPTS` must be an array of function pointers; some spots
//! in this array may need to be set to 0 if they are marked as *reserved* in the data sheet /
//! reference manual. We recommend using a `union` to set the reserved spots to `0`; `None`
//! (`Option<fn()>`) may also work but it's not guaranteed that the `None` variant will *always* be
//! represented by the value `0`.
//!
//! Let's illustrate with an artificial example where a device only has two interrupt: `Foo`, with
//! IRQ number = 2, and `Bar`, with IRQ number = 4.
//!
//! ```no_run
//! pub union Vector {
//! handler: unsafe extern "C" fn(),
//! reserved: usize,
//! }
//!
//! extern "C" {
//! fn Foo();
//! fn Bar();
//! }
//!
//! #[link_section = ".vector_table.interrupts"]
//! #[no_mangle]
//! pub static __INTERRUPTS: [Vector; 5] = [
//! // 0-1: Reserved
//! Vector { reserved: 0 },
//! Vector { reserved: 0 },
//!
//! // 2: Foo
//! Vector { handler: Foo },
//!
//! // 3: Reserved
//! Vector { reserved: 0 },
//!
//! // 4: Bar
//! Vector { handler: Bar },
//! ];
//! ```
//!
//! ### `device.x`
//!
//! Linking in `__INTERRUPTS` creates a bunch of undefined references. If the user doesn't set a
//! handler for *all* the device specific interrupts then linking will fail with `"undefined
//! reference"` errors.
//!
//! We want to provide a default handler for all the interrupts while still letting the user
//! individually override each interrupt handler. In C projects, this is usually accomplished using
//! weak aliases declared in external assembly files. We use a similar solution via the `PROVIDE`
//! command in the linker script: when the `"device"` feature is enabled, `cortex-m-rt`'s linker
//! script (`link.x`) includes a linker script named `device.x`, which must be provided by
//! whichever crate provides `__INTERRUPTS`.
//!
//! For our running example the `device.x` linker script looks like this:
//!
//! ```text
//! /* device.x */
//! PROVIDE(Foo = DefaultHandler);
//! PROVIDE(Bar = DefaultHandler);
//! ```
//!
//! This weakly aliases both `Foo` and `Bar`. `DefaultHandler` is the default exception handler and
//! that the core exceptions use unless overridden.
//!
//! Because this linker script is provided by a dependency of the final application the dependency
//! must contain a build script that puts `device.x` somewhere the linker can find. An example of
//! such build script is shown below:
//!
//! ```ignore
//! use std::env;
//! use std::fs::File;
//! use std::io::Write;
//! use std::path::PathBuf;
//!
//! fn main() {
//! // Put the linker script somewhere the linker can find it
//! let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
//! File::create(out.join("device.x"))
//! .unwrap()
//! .write_all(include_bytes!("device.x"))
//! .unwrap();
//! println!("cargo:rustc-link-search={}", out.display());
//! }
//! ```
//!
//! ## Uninitialized static variables
//!
//! The `.uninit` linker section can be used to leave `static mut` variables uninitialized. One use
//! case of unitialized static variables is to avoid zeroing large statically allocated buffers (say
//! to be used as thread stacks) -- this can considerably reduce initialization time on devices that
//! operate at low frequencies.
//!
//! The only correct way to use this section is with [`MaybeUninit`] types.
//!
//! [`MaybeUninit`]: https://doc.rust-lang.org/core/mem/union.MaybeUninit.html
//!
//! ```no_run,edition2018
//! # extern crate core;
//! use core::mem::MaybeUninit;
//!
//! const STACK_SIZE: usize = 8 * 1024;
//! const NTHREADS: usize = 4;
//!
//! #[link_section = ".uninit.STACKS"]
//! static mut STACKS: MaybeUninit<[[u8; STACK_SIZE]; NTHREADS]> = MaybeUninit::uninit();
//! ```
//!
//! Be very careful with the `link_section` attribute because it's easy to misuse in ways that cause
//! undefined behavior.
//!
//! ## Extra Sections
//!
//! Some microcontrollers provide additional memory regions beyond RAM and FLASH. For example,
//! some STM32 devices provide "CCM" or core-coupled RAM that is only accessible from the core. In
//! order to place variables in these sections using [`link_section`] attributes from your code,
//! you need to modify `memory.x` to declare the additional sections:
//!
//! [`link_section`]: https://doc.rust-lang.org/reference/abi.html#the-link_section-attribute
//!
//! ```text
//! MEMORY
//! {
//! FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 1024K
//! RAM (rw) : ORIGIN = 0x20000000, LENGTH = 128K
//! CCMRAM (rw) : ORIGIN = 0x10000000, LENGTH = 64K
//! }
//!
//! SECTIONS
//! {
//! .ccmram (NOLOAD) : ALIGN(4)
//! {
//! *(.ccmram .ccmram.*);
//! . = ALIGN(4);
//! } > CCMRAM
//! }
//! ```
//!
//! You can then use something like this to place a variable into this specific section of memory:
//!
//! ```no_run,edition2018
//! # extern crate core;
//! # use core::mem::MaybeUninit;
//! #[link_section=".ccmram.BUFFERS"]
//! static mut BUF: MaybeUninit<[u8; 1024]> = MaybeUninit::uninit();
//! ```
//!
//! However, note that these sections are not initialised by cortex-m-rt, and so must be used
//! either with `MaybeUninit` types or you must otherwise arrange for them to be initialised
//! yourself, such as in `pre_init`.
//!
//! [attr-entry]: attr.entry.html
//! [attr-exception]: attr.exception.html
//! [attr-pre_init]: attr.pre_init.html
//!
//! # Minimum Supported Rust Version (MSRV)
//!
//! The MSRV of this release is Rust 1.61.0.
// # Developer notes
//
// - `link_section` is used to place symbols in specific places of the final binary. The names used
// here will appear in the linker script (`link.x`) in conjunction with the `KEEP` command.
#![deny(missing_docs)]
#![no_std]
extern crate cortex_m_rt_macros as macros;
/// The 32-bit value the stack is painted with before the program runs.
// Note: keep this value in-sync with the start-up assembly code, as we can't
// use const values in `global_asm!` yet.
#[cfg(feature = "paint-stack")]
pub const STACK_PAINT_VALUE: u32 = 0xcccc_cccc;
#[cfg(cortex_m)]
use core::arch::global_asm;
use core::fmt;
/// Parse cfg attributes inside a global_asm call.
#[cfg(cortex_m)]
macro_rules! cfg_global_asm {
{@inner, [$($x:tt)*], } => {
global_asm!{$($x)*}
};
(@inner, [$($x:tt)*], #[cfg($meta:meta)] $asm:literal, $($rest:tt)*) => {
#[cfg($meta)]
cfg_global_asm!{@inner, [$($x)* $asm,], $($rest)*}
#[cfg(not($meta))]
cfg_global_asm!{@inner, [$($x)*], $($rest)*}
};
{@inner, [$($x:tt)*], $asm:literal, $($rest:tt)*} => {
cfg_global_asm!{@inner, [$($x)* $asm,], $($rest)*}
};
{$($asms:tt)*} => {
cfg_global_asm!{@inner, [], $($asms)*}
};
}
// This reset vector is the initial entry point after a system reset.
// Calls an optional user-provided __pre_init and then initialises RAM.
// If the target has an FPU, it is enabled.
// Finally jumps to the user main function.
#[cfg(cortex_m)]
cfg_global_asm! {
".cfi_sections .debug_frame
.section .Reset, \"ax\"
.global Reset
.type Reset,%function
.thumb_func",
".cfi_startproc
Reset:",
// If enabled, initialise the SP. This is normally initialised by the CPU itself or by a
// bootloader, but some debuggers fail to set it when resetting the target, leading to
// stack corruptions.
#[cfg(feature = "set-sp")]
"ldr r0, =_stack_start
msr msp, r0",
// If enabled, initialise VTOR to the start of the vector table. This is normally initialised
// by a bootloader when the non-reset value is required, but some bootloaders do not set it,
// leading to frustrating issues where everything seems to work but interrupts are never
// handled. The VTOR register is optional on ARMv6-M, but when not present is RAZ,WI and
// therefore safe to write to.
#[cfg(feature = "set-vtor")]
"ldr r0, =0xe000ed08
ldr r1, =__vector_table
str r1, [r0]",
// Run user pre-init code which must be executed immediately after startup, before the
// potentially time-consuming memory initialisation takes place.
// Example use cases include disabling default watchdogs or enabling RAM.
"bl __pre_init",
// If enabled, initialize RAM with zeros. This is not usually required, but might be necessary
// to properly initialize checksum-based memory integrity measures on safety-critical hardware.
#[cfg(feature = "zero-init-ram")]
"ldr r0, =_ram_start
ldr r1, =_ram_end
movs r2, #0
0:
cmp r1, r0
beq 1f
stm r0!, {{r2}}
b 0b
1:",
// Initialise .bss memory. `__sbss` and `__ebss` come from the linker script.
#[cfg(not(feature = "zero-init-ram"))]
"ldr r0, =__sbss
ldr r1, =__ebss
movs r2, #0
0:
cmp r1, r0
beq 1f
stm r0!, {{r2}}
b 0b
1:",
// If enabled, paint stack/heap RAM with 0xcccccccc.
// `__sheap` and `_stack_start` come from the linker script.
#[cfg(feature = "paint-stack")]
"ldr r0, =__sheap
ldr r1, =_stack_start
ldr r2, =0xcccccccc // This must match STACK_PAINT_VALUE
0:
cmp r1, r0
beq 1f
stm r0!, {{r2}}
b 0b
1:",
// Initialise .data memory. `__sdata`, `__sidata`, and `__edata` come from the linker script.
"ldr r0, =__sdata
ldr r1, =__edata
ldr r2, =__sidata
0:
cmp r1, r0
beq 1f
ldm r2!, {{r3}}
stm r0!, {{r3}}
b 0b
1:",
// Potentially enable an FPU.
// SCB.CPACR is 0xE000_ED88.
// We enable access to CP10 and CP11 from priviliged and unprivileged mode.
#[cfg(has_fpu)]
"ldr r0, =0xE000ED88
ldr r1, =(0b1111 << 20)
ldr r2, [r0]
orr r2, r2, r1
str r2, [r0]
dsb
isb",
// Jump to user main function.
// `bl` is used for the extended range, but the user main function should not return,
// so trap on any unexpected return.
"bl main
udf #0",
".cfi_endproc
.size Reset, . - Reset",
}
/// Attribute to declare an interrupt (AKA device-specific exception) handler
///
/// **NOTE**: This attribute is exposed by `cortex-m-rt` only when the `device` feature is enabled.
/// However, that export is not meant to be used directly -- using it will result in a compilation
/// error. You should instead use the PAC (usually generated using `svd2rust`) re-export of
/// that attribute. You need to use the re-export to have the compiler check that the interrupt
/// exists on the target device.
///
/// # Syntax
///
/// ``` ignore
/// extern crate device;
///
/// // the attribute comes from the PAC not from cortex-m-rt
/// use device::interrupt;
///
/// #[interrupt]
/// fn USART1() {
/// // ..
/// }
/// ```
///
/// where the name of the function must be one of the device interrupts.
///
/// # Usage
///
/// `#[interrupt] fn Name(..` overrides the default handler for the interrupt with the given `Name`.
/// These handlers must have signature `[unsafe] fn() [-> !]`. It's possible to add state to these
/// handlers by declaring `static mut` variables at the beginning of the body of the function. These
/// variables will be safe to access from the function body.
///
/// If the interrupt handler has not been overridden it will be dispatched by the default exception
/// handler (`DefaultHandler`).
///
/// # Properties
///
/// Interrupts handlers can only be called by the hardware. Other parts of the program can't refer
/// to the interrupt handlers, much less invoke them as if they were functions.
///
/// `static mut` variables declared within an interrupt handler are safe to access and can be used
/// to preserve state across invocations of the handler. The compiler can't prove this is safe so
/// the attribute will help by making a transformation to the source code: for this reason a
/// variable like `static mut FOO: u32` will become `let FOO: &mut u32;`.
///
/// # Examples
///
/// - Using state within an interrupt handler
///
/// ``` ignore
/// extern crate device;
///
/// use device::interrupt;
///
/// #[interrupt]
/// fn TIM2() {
/// static mut COUNT: i32 = 0;
///
/// // `COUNT` is safe to access and has type `&mut i32`
/// *COUNT += 1;
///
/// println!("{}", COUNT);
/// }
/// ```
#[cfg(feature = "device")]
pub use macros::interrupt;
/// Attribute to declare the entry point of the program
///
/// The specified function will be called by the reset handler *after* RAM has been initialized. In
/// the case of the `thumbv7em-none-eabihf` target the FPU will also be enabled before the function
/// is called.
///
/// The type of the specified function must be `[unsafe] fn() -> !` (never ending function)
///
/// # Properties
///
/// The entry point will be called by the reset handler. The program can't reference to the entry
/// point, much less invoke it.
///
/// `static mut` variables declared within the entry point are safe to access. The compiler can't
/// prove this is safe so the attribute will help by making a transformation to the source code: for
/// this reason a variable like `static mut FOO: u32` will become `let FOO: &'static mut u32;`. Note
/// that `&'static mut` references have move semantics.
///
/// # Examples
///
/// - Simple entry point
///
/// ``` no_run
/// # #![no_main]
/// # use cortex_m_rt::entry;
/// #[entry]
/// fn main() -> ! {
/// loop {
/// /* .. */
/// }
/// }
/// ```
///
/// - `static mut` variables local to the entry point are safe to modify.
///
/// ``` no_run
/// # #![no_main]
/// # use cortex_m_rt::entry;
/// #[entry]
/// fn main() -> ! {
/// static mut FOO: u32 = 0;
///
/// let foo: &'static mut u32 = FOO;
/// assert_eq!(*foo, 0);
/// *foo = 1;
/// assert_eq!(*foo, 1);
///
/// loop {
/// /* .. */
/// }
/// }
/// ```
pub use macros::entry;
/// Attribute to declare an exception handler
///
/// # Syntax
///
/// ```
/// # use cortex_m_rt::exception;
/// #[exception]
/// fn SysTick() {
/// // ..
/// }
///
/// # fn main() {}
/// ```
///
/// where the name of the function must be one of:
///
/// - `DefaultHandler`
/// - `NonMaskableInt`
/// - `HardFault`
/// - `MemoryManagement` (a)
/// - `BusFault` (a)
/// - `UsageFault` (a)
/// - `SecureFault` (b)
/// - `SVCall`
/// - `DebugMonitor` (a)
/// - `PendSV`
/// - `SysTick`
///
/// (a) Not available on Cortex-M0 variants (`thumbv6m-none-eabi`)
///
/// (b) Only available on ARMv8-M
///
/// # Usage
///
/// ## HardFault handler
///
/// `#[exception(trampoline = true)] unsafe fn HardFault(..` sets the hard fault handler.
/// If the trampoline parameter is set to true, the handler must have signature `unsafe fn(&ExceptionFrame) -> !`.
/// If set to false, the handler must have signature `unsafe fn() -> !`.
///
/// This handler is not allowed to return as that can cause undefined behavior.
///
/// To maintain backwards compatibility the attribute can be used without trampoline parameter (`#[exception]`),
/// which sets the trampoline to true.
///
/// ## Default handler
///
/// `#[exception] unsafe fn DefaultHandler(..` sets the *default* handler. All exceptions which have
/// not been assigned a handler will be serviced by this handler. This handler must have signature
/// `unsafe fn(irqn: i16) [-> !]`. `irqn` is the IRQ number (See CMSIS); `irqn` will be a negative
/// number when the handler is servicing a core exception; `irqn` will be a positive number when the
/// handler is servicing a device specific exception (interrupt).
///
/// ## Other handlers
///
/// `#[exception] fn Name(..` overrides the default handler for the exception with the given `Name`.
/// These handlers must have signature `[unsafe] fn() [-> !]`. When overriding these other exception
/// it's possible to add state to them by declaring `static mut` variables at the beginning of the
/// body of the function. These variables will be safe to access from the function body.
///
/// # Properties
///
/// Exception handlers can only be called by the hardware. Other parts of the program can't refer to
/// the exception handlers, much less invoke them as if they were functions.
///
/// `static mut` variables declared within an exception handler are safe to access and can be used
/// to preserve state across invocations of the handler. The compiler can't prove this is safe so
/// the attribute will help by making a transformation to the source code: for this reason a
/// variable like `static mut FOO: u32` will become `let FOO: &mut u32;`.
///
/// # Safety
///
/// It is not generally safe to register handlers for non-maskable interrupts. On Cortex-M,
/// `HardFault` is non-maskable (at least in general), and there is an explicitly non-maskable
/// interrupt `NonMaskableInt`.
///
/// The reason for that is that non-maskable interrupts will preempt any currently running function,
/// even if that function executes within a critical section. Thus, if it was safe to define NMI
/// handlers, critical sections wouldn't work safely anymore.
///
/// This also means that defining a `DefaultHandler` must be unsafe, as that will catch
/// `NonMaskableInt` and `HardFault` if no handlers for those are defined.
///
/// The safety requirements on those handlers is as follows: The handler must not access any data
/// that is protected via a critical section and shared with other interrupts that may be preempted
/// by the NMI while holding the critical section. As long as this requirement is fulfilled, it is
/// safe to handle NMIs.
///
/// # Examples
///
/// - Setting the default handler
///
/// ```
/// use cortex_m_rt::exception;
///
/// #[exception]
/// unsafe fn DefaultHandler(irqn: i16) {
/// println!("IRQn = {}", irqn);
/// }
///
/// # fn main() {}
/// ```
///
/// - Overriding the `SysTick` handler
///
/// ```
/// use cortex_m_rt::exception;
///
/// #[exception]
/// fn SysTick() {
/// static mut COUNT: i32 = 0;
///
/// // `COUNT` is safe to access and has type `&mut i32`
/// *COUNT += 1;
///
/// println!("{}", COUNT);
/// }
///
/// # fn main() {}
/// ```
pub use macros::exception;
/// Attribute to mark which function will be called at the beginning of the reset handler.
///
/// **IMPORTANT**: This attribute can appear at most *once* in the dependency graph.
///
/// The function must have the signature of `unsafe fn()`.
///
/// # Safety
///
/// The function will be called before memory is initialized, as soon as possible after reset. Any
/// access of memory, including any static variables, will result in undefined behavior.
///
/// **Warning**: Due to [rvalue static promotion][rfc1414] static variables may be accessed whenever
/// taking a reference to a constant. This means that even trivial expressions such as `&1` in the
/// `#[pre_init]` function *or any code called by it* will cause **immediate undefined behavior**.
///
/// Users are advised to only use the `#[pre_init]` feature when absolutely necessary as these
/// constraints make safe usage difficult.
///
/// # Examples
///
/// ```
/// # use cortex_m_rt::pre_init;
/// #[pre_init]
/// unsafe fn before_main() {
/// // do something here
/// }
///
/// # fn main() {}
/// ```
///
/// [rfc1414]: https://github.com/rust-lang/rfcs/blob/master/text/1414-rvalue_static_promotion.md
pub use macros::pre_init;
// We export this static with an informative name so that if an application attempts to link
// two copies of cortex-m-rt together, linking will fail. We also declare a links key in
// Cargo.toml which is the more modern way to solve the same problem, but we have to keep
// __ONCE__ around to prevent linking with versions before the links key was added.
#[export_name = "error: cortex-m-rt appears more than once in the dependency graph"]
#[doc(hidden)]
pub static __ONCE__: () = ();
/// Registers stacked (pushed onto the stack) during an exception.
#[derive(Clone, Copy)]
#[repr(C)]
#[allow(dead_code)]
pub struct ExceptionFrame {
r0: u32,
r1: u32,
r2: u32,
r3: u32,
r12: u32,
lr: u32,
pc: u32,
xpsr: u32,
}
impl ExceptionFrame {
/// Returns the value of (general purpose) register 0.
#[inline(always)]
pub fn r0(&self) -> u32 {
self.r0
}
/// Returns the value of (general purpose) register 1.
#[inline(always)]
pub fn r1(&self) -> u32 {
self.r1
}
/// Returns the value of (general purpose) register 2.
#[inline(always)]
pub fn r2(&self) -> u32 {
self.r2
}
/// Returns the value of (general purpose) register 3.
#[inline(always)]
pub fn r3(&self) -> u32 {
self.r3
}
/// Returns the value of (general purpose) register 12.
#[inline(always)]
pub fn r12(&self) -> u32 {
self.r12
}
/// Returns the value of the Link Register.
#[inline(always)]
pub fn lr(&self) -> u32 {
self.lr
}
/// Returns the value of the Program Counter.
#[inline(always)]
pub fn pc(&self) -> u32 {
self.pc
}
/// Returns the value of the Program Status Register.
#[inline(always)]
pub fn xpsr(&self) -> u32 {
self.xpsr
}
/// Sets the stacked value of (general purpose) register 0.
///
/// # Safety
///
/// This affects the `r0` register of the preempted code, which must not rely on it getting
/// restored to its previous value.
#[inline(always)]
pub unsafe fn set_r0(&mut self, value: u32) {
self.r0 = value;
}
/// Sets the stacked value of (general purpose) register 1.
///
/// # Safety
///
/// This affects the `r1` register of the preempted code, which must not rely on it getting
/// restored to its previous value.
#[inline(always)]
pub unsafe fn set_r1(&mut self, value: u32) {
self.r1 = value;
}
/// Sets the stacked value of (general purpose) register 2.
///
/// # Safety
///
/// This affects the `r2` register of the preempted code, which must not rely on it getting
/// restored to its previous value.
#[inline(always)]
pub unsafe fn set_r2(&mut self, value: u32) {
self.r2 = value;
}
/// Sets the stacked value of (general purpose) register 3.
///
/// # Safety
///
/// This affects the `r3` register of the preempted code, which must not rely on it getting
/// restored to its previous value.
#[inline(always)]
pub unsafe fn set_r3(&mut self, value: u32) {
self.r3 = value;
}
/// Sets the stacked value of (general purpose) register 12.
///
/// # Safety
///
/// This affects the `r12` register of the preempted code, which must not rely on it getting
/// restored to its previous value.
#[inline(always)]
pub unsafe fn set_r12(&mut self, value: u32) {
self.r12 = value;
}
/// Sets the stacked value of the Link Register.
///
/// # Safety
///
/// This affects the `lr` register of the preempted code, which must not rely on it getting
/// restored to its previous value.
#[inline(always)]
pub unsafe fn set_lr(&mut self, value: u32) {
self.lr = value;
}
/// Sets the stacked value of the Program Counter.
///
/// # Safety
///
/// This affects the `pc` register of the preempted code, which must not rely on it getting
/// restored to its previous value.
#[inline(always)]
pub unsafe fn set_pc(&mut self, value: u32) {
self.pc = value;
}
/// Sets the stacked value of the Program Status Register.
///
/// # Safety
///
/// This affects the `xPSR` registers (`IPSR`, `APSR`, and `EPSR`) of the preempted code, which
/// must not rely on them getting restored to their previous value.
#[inline(always)]
pub unsafe fn set_xpsr(&mut self, value: u32) {
self.xpsr = value;
}
}
impl fmt::Debug for ExceptionFrame {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
struct Hex(u32);
impl fmt::Debug for Hex {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "0x{:08x}", self.0)
}
}
f.debug_struct("ExceptionFrame")
.field("r0", &Hex(self.r0))
.field("r1", &Hex(self.r1))
.field("r2", &Hex(self.r2))
.field("r3", &Hex(self.r3))
.field("r12", &Hex(self.r12))
.field("lr", &Hex(self.lr))
.field("pc", &Hex(self.pc))
.field("xpsr", &Hex(self.xpsr))
.finish()
}
}
/// Returns a pointer to the start of the heap
///
/// The returned pointer is guaranteed to be 4-byte aligned.
#[inline]
pub fn heap_start() -> *mut u32 {
extern "C" {
static mut __sheap: u32;
}
#[allow(unused_unsafe)] // no longer unsafe since rust 1.82.0
unsafe {
core::ptr::addr_of_mut!(__sheap)
}
}
// Entry point is Reset.
#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".vector_table.reset_vector")]
#[no_mangle]
pub static __RESET_VECTOR: unsafe extern "C" fn() -> ! = Reset;
#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".HardFault.default")]
#[no_mangle]
pub unsafe extern "C" fn HardFault_() -> ! {
#[allow(clippy::empty_loop)]
loop {}
}
#[doc(hidden)]
#[no_mangle]
pub unsafe extern "C" fn DefaultHandler_() -> ! {
#[allow(clippy::empty_loop)]
loop {}
}
#[doc(hidden)]
#[no_mangle]
pub unsafe extern "C" fn DefaultPreInit() {}
/* Exceptions */
#[doc(hidden)]
pub enum Exception {
NonMaskableInt,
// Not overridable
// HardFault,
#[cfg(not(armv6m))]
MemoryManagement,
#[cfg(not(armv6m))]
BusFault,
#[cfg(not(armv6m))]
UsageFault,
#[cfg(armv8m)]
SecureFault,
SVCall,
#[cfg(not(armv6m))]
DebugMonitor,
PendSV,
SysTick,
}
#[doc(hidden)]
pub use self::Exception as exception;
extern "C" {
fn Reset() -> !;
fn NonMaskableInt();
fn HardFault();
#[cfg(not(armv6m))]
fn MemoryManagement();
#[cfg(not(armv6m))]
fn BusFault();
#[cfg(not(armv6m))]
fn UsageFault();
#[cfg(armv8m)]
fn SecureFault();
fn SVCall();
#[cfg(not(armv6m))]
fn DebugMonitor();
fn PendSV();
fn SysTick();
}
#[doc(hidden)]
#[repr(C)]
pub union Vector {
handler: unsafe extern "C" fn(),
reserved: usize,
}
#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".vector_table.exceptions")]
#[no_mangle]
pub static __EXCEPTIONS: [Vector; 14] = [
// Exception 2: Non Maskable Interrupt.
Vector {
handler: NonMaskableInt,
},
// Exception 3: Hard Fault Interrupt.
Vector { handler: HardFault },
// Exception 4: Memory Management Interrupt [not on Cortex-M0 variants].
#[cfg(not(armv6m))]
Vector {
handler: MemoryManagement,
},
#[cfg(armv6m)]
Vector { reserved: 0 },
// Exception 5: Bus Fault Interrupt [not on Cortex-M0 variants].
#[cfg(not(armv6m))]
Vector { handler: BusFault },
#[cfg(armv6m)]
Vector { reserved: 0 },
// Exception 6: Usage Fault Interrupt [not on Cortex-M0 variants].
#[cfg(not(armv6m))]
Vector {
handler: UsageFault,
},
#[cfg(armv6m)]
Vector { reserved: 0 },
// Exception 7: Secure Fault Interrupt [only on Armv8-M].
#[cfg(armv8m)]
Vector {
handler: SecureFault,
},
#[cfg(not(armv8m))]
Vector { reserved: 0 },
// 8-10: Reserved
Vector { reserved: 0 },
Vector { reserved: 0 },
Vector { reserved: 0 },
// Exception 11: SV Call Interrupt.
Vector { handler: SVCall },
// Exception 12: Debug Monitor Interrupt [not on Cortex-M0 variants].
#[cfg(not(armv6m))]
Vector {
handler: DebugMonitor,
},
#[cfg(armv6m)]
Vector { reserved: 0 },
// 13: Reserved
Vector { reserved: 0 },
// Exception 14: Pend SV Interrupt [not on Cortex-M0 variants].
Vector { handler: PendSV },
// Exception 15: System Tick Interrupt.
Vector { handler: SysTick },
];
// If we are not targeting a specific device we bind all the potential device specific interrupts
// to the default handler
#[cfg(all(any(not(feature = "device"), test), not(armv6m), not(armv8m)))]
#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".vector_table.interrupts")]
#[no_mangle]
pub static __INTERRUPTS: [unsafe extern "C" fn(); 240] = [{
extern "C" {
fn DefaultHandler();
}
DefaultHandler
}; 240];
// ARMv8-M can have up to 496 device specific interrupts
#[cfg(all(not(feature = "device"), armv8m))]
#[doc(hidden)]
#[cfg_attr(cortex_m, link_section = ".vector_table.interrupts")]
#[no_mangle]
pub static __INTERRUPTS: [unsafe extern "C" fn(); 496] = [{
extern "C" {
fn DefaultHandler();
}
DefaultHandler
}; 496];
// ARMv6-M can only have a maximum of 32 device specific interrupts
#[cfg(all(not(feature = "device"), armv6m))]
#[doc(hidden)]
#[link_section = ".vector_table.interrupts"]
#[no_mangle]
pub static __INTERRUPTS: [unsafe extern "C" fn(); 32] = [{
extern "C" {
fn DefaultHandler();
}
DefaultHandler
}; 32];