1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
//! System Control Block

use core::ptr;

use volatile_register::RW;

#[cfg(not(armv6m))]
use super::cpuid::CsselrCacheType;
#[cfg(not(armv6m))]
use super::CBP;
#[cfg(not(armv6m))]
use super::CPUID;
use super::SCB;

/// Register block
#[repr(C)]
pub struct RegisterBlock {
    /// Interrupt Control and State
    pub icsr: RW<u32>,

    /// Vector Table Offset (not present on Cortex-M0 variants)
    pub vtor: RW<u32>,

    /// Application Interrupt and Reset Control
    pub aircr: RW<u32>,

    /// System Control
    pub scr: RW<u32>,

    /// Configuration and Control
    pub ccr: RW<u32>,

    /// System Handler Priority (word accessible only on Cortex-M0 variants)
    ///
    /// On ARMv7-M, `shpr[0]` points to SHPR1
    ///
    /// On ARMv6-M, `shpr[0]` points to SHPR2
    #[cfg(not(armv6m))]
    pub shpr: [RW<u8>; 12],
    #[cfg(armv6m)]
    _reserved1: u32,
    /// System Handler Priority (word accessible only on Cortex-M0 variants)
    ///
    /// On ARMv7-M, `shpr[0]` points to SHPR1
    ///
    /// On ARMv6-M, `shpr[0]` points to SHPR2
    #[cfg(armv6m)]
    pub shpr: [RW<u32>; 2],

    /// System Handler Control and State
    pub shcrs: RW<u32>,

    /// Configurable Fault Status (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub cfsr: RW<u32>,
    #[cfg(armv6m)]
    _reserved2: u32,

    /// HardFault Status (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub hfsr: RW<u32>,
    #[cfg(armv6m)]
    _reserved3: u32,

    /// Debug Fault Status (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub dfsr: RW<u32>,
    #[cfg(armv6m)]
    _reserved4: u32,

    /// MemManage Fault Address (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub mmfar: RW<u32>,
    #[cfg(armv6m)]
    _reserved5: u32,

    /// BusFault Address (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub bfar: RW<u32>,
    #[cfg(armv6m)]
    _reserved6: u32,

    /// Auxiliary Fault Status (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub afsr: RW<u32>,
    #[cfg(armv6m)]
    _reserved7: u32,

    _reserved8: [u32; 18],

    /// Coprocessor Access Control (not present on Cortex-M0 variants)
    #[cfg(not(armv6m))]
    pub cpacr: RW<u32>,
    #[cfg(armv6m)]
    _reserved9: u32,
}

#[cfg(has_fpu)]
pub use cortex_m_0_6::peripheral::scb::FpuAccessMode;

#[cfg(has_fpu)]
mod fpu_consts {
    pub const SCB_CPACR_FPU_MASK: u32 = 0b11_11 << 20;
    pub const SCB_CPACR_FPU_ENABLE: u32 = 0b01_01 << 20;
    pub const SCB_CPACR_FPU_USER: u32 = 0b10_10 << 20;
}

#[cfg(has_fpu)]
use self::fpu_consts::*;

#[cfg(has_fpu)]
impl SCB {
    /// Shorthand for `set_fpu_access_mode(FpuAccessMode::Disabled)`
    pub fn disable_fpu(&mut self) {
        self.set_fpu_access_mode(FpuAccessMode::Disabled)
    }

    /// Shorthand for `set_fpu_access_mode(FpuAccessMode::Enabled)`
    pub fn enable_fpu(&mut self) {
        self.set_fpu_access_mode(FpuAccessMode::Enabled)
    }

    /// Gets FPU access mode
    pub fn fpu_access_mode() -> FpuAccessMode {
        // NOTE(unsafe) atomic read operation with no side effects
        let cpacr = unsafe { (*Self::ptr()).cpacr.read() };

        if cpacr & SCB_CPACR_FPU_MASK == SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER {
            FpuAccessMode::Enabled
        } else if cpacr & SCB_CPACR_FPU_MASK == SCB_CPACR_FPU_ENABLE {
            FpuAccessMode::Privileged
        } else {
            FpuAccessMode::Disabled
        }
    }

    /// Sets FPU access mode
    ///
    /// *IMPORTANT* Any function that runs fully or partly with the FPU disabled must *not* take any
    /// floating-point arguments or have any floating-point local variables. Because the compiler
    /// might inline such a function into a caller that does have floating-point arguments or
    /// variables, any such function must be also marked #[inline(never)].
    pub fn set_fpu_access_mode(&mut self, mode: FpuAccessMode) {
        let mut cpacr = self.cpacr.read() & !SCB_CPACR_FPU_MASK;
        match mode {
            FpuAccessMode::Disabled => (),
            FpuAccessMode::Privileged => cpacr |= SCB_CPACR_FPU_ENABLE,
            FpuAccessMode::Enabled => cpacr |= SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER,
        }
        unsafe { self.cpacr.write(cpacr) }
    }
}

impl SCB {
    /// Returns the active exception number
    pub fn vect_active() -> VectActive {
        let icsr = unsafe { ptr::read(&(*SCB::ptr()).icsr as *const _ as *const u32) };

        match icsr as u8 {
            0 => VectActive::ThreadMode,
            2 => VectActive::Exception(Exception::NonMaskableInt),
            3 => VectActive::Exception(Exception::HardFault),
            #[cfg(not(armv6m))]
            4 => VectActive::Exception(Exception::MemoryManagement),
            #[cfg(not(armv6m))]
            5 => VectActive::Exception(Exception::BusFault),
            #[cfg(not(armv6m))]
            6 => VectActive::Exception(Exception::UsageFault),
            #[cfg(any(armv8m, target_arch = "x86_64"))]
            7 => VectActive::Exception(Exception::SecureFault),
            11 => VectActive::Exception(Exception::SVCall),
            #[cfg(not(armv6m))]
            12 => VectActive::Exception(Exception::DebugMonitor),
            14 => VectActive::Exception(Exception::PendSV),
            15 => VectActive::Exception(Exception::SysTick),
            irqn => VectActive::Interrupt { irqn: irqn - 16 },
        }
    }
}

pub use cortex_m_0_6::peripheral::scb::{Exception, VectActive, SystemHandler};

#[cfg(not(armv6m))]
mod scb_consts {
    pub const SCB_CCR_IC_MASK: u32 = (1 << 17);
    pub const SCB_CCR_DC_MASK: u32 = (1 << 16);
}

#[cfg(not(armv6m))]
use self::scb_consts::*;

#[cfg(not(armv6m))]
unsafe fn cbp_new() -> CBP {
    core::mem::transmute(())
}

#[cfg(not(armv6m))]
impl SCB {
    /// Enables I-Cache if currently disabled
    #[inline]
    pub fn enable_icache(&mut self) {
        // Don't do anything if ICache is already enabled
        if Self::icache_enabled() {
            return;
        }

        // NOTE(unsafe) All CBP registers are write-only and stateless
        let mut cbp = unsafe { cbp_new() };

        // Invalidate I-Cache
        cbp.iciallu();

        // Enable I-Cache
        unsafe { self.ccr.modify(|r| r | SCB_CCR_IC_MASK) };

        ::asm::dsb();
        ::asm::isb();
    }

    /// Disables I-Cache if currently enabled
    #[inline]
    pub fn disable_icache(&mut self) {
        // Don't do anything if ICache is already disabled
        if !Self::icache_enabled() {
            return;
        }

        // NOTE(unsafe) All CBP registers are write-only and stateless
        let mut cbp = unsafe { cbp_new() };

        // Disable I-Cache
        unsafe { self.ccr.modify(|r| r & !SCB_CCR_IC_MASK) };

        // Invalidate I-Cache
        cbp.iciallu();

        ::asm::dsb();
        ::asm::isb();
    }

    /// Returns whether the I-Cache is currently enabled
    #[inline]
    pub fn icache_enabled() -> bool {
        ::asm::dsb();
        ::asm::isb();

        // NOTE(unsafe) atomic read with no side effects
        unsafe { (*Self::ptr()).ccr.read() & SCB_CCR_IC_MASK == SCB_CCR_IC_MASK }
    }

    /// Invalidates I-Cache
    #[inline]
    pub fn invalidate_icache(&mut self) {
        // NOTE(unsafe) All CBP registers are write-only and stateless
        let mut cbp = unsafe { cbp_new() };

        // Invalidate I-Cache
        cbp.iciallu();

        ::asm::dsb();
        ::asm::isb();
    }

    /// Enables D-cache if currently disabled
    #[inline]
    pub fn enable_dcache(&mut self, cpuid: &mut CPUID) {
        // Don't do anything if DCache is already enabled
        if Self::dcache_enabled() {
            return;
        }

        // Invalidate anything currently in the DCache
        self.invalidate_dcache(cpuid);

        // Now turn on the DCache
        unsafe { self.ccr.modify(|r| r | SCB_CCR_DC_MASK) };

        ::asm::dsb();
        ::asm::isb();
    }

    /// Disables D-cache if currently enabled
    #[inline]
    pub fn disable_dcache(&mut self, cpuid: &mut CPUID) {
        // Don't do anything if DCache is already disabled
        if !Self::dcache_enabled() {
            return;
        }

        // Turn off the DCache
        unsafe { self.ccr.modify(|r| r & !SCB_CCR_DC_MASK) };

        // Clean and invalidate whatever was left in it
        self.clean_invalidate_dcache(cpuid);
    }

    /// Returns whether the D-Cache is currently enabled
    #[inline]
    pub fn dcache_enabled() -> bool {
        ::asm::dsb();
        ::asm::isb();

        // NOTE(unsafe) atomic read with no side effects
        unsafe { (*Self::ptr()).ccr.read() & SCB_CCR_DC_MASK == SCB_CCR_DC_MASK }
    }

    /// Invalidates D-cache
    ///
    /// Note that calling this while the dcache is enabled will probably wipe out your
    /// stack, depending on optimisations, breaking returning to the call point.
    /// It's used immediately before enabling the dcache, but not exported publicly.
    #[inline]
    fn invalidate_dcache(&mut self, cpuid: &mut CPUID) {
        // NOTE(unsafe) All CBP registers are write-only and stateless
        let mut cbp = unsafe { cbp_new() };

        // Read number of sets and ways
        let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);

        // Invalidate entire D-Cache
        for set in 0..sets {
            for way in 0..ways {
                cbp.dcisw(set, way);
            }
        }

        ::asm::dsb();
        ::asm::isb();
    }

    /// Cleans D-cache
    #[inline]
    pub fn clean_dcache(&mut self, cpuid: &mut CPUID) {
        // NOTE(unsafe) All CBP registers are write-only and stateless
        let mut cbp = unsafe { cbp_new() };

        // Read number of sets and ways
        let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);

        for set in 0..sets {
            for way in 0..ways {
                cbp.dccsw(set, way);
            }
        }

        ::asm::dsb();
        ::asm::isb();
    }

    /// Cleans and invalidates D-cache
    #[inline]
    pub fn clean_invalidate_dcache(&mut self, cpuid: &mut CPUID) {
        // NOTE(unsafe) All CBP registers are write-only and stateless
        let mut cbp = unsafe { cbp_new() };

        // Read number of sets and ways
        let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);

        for set in 0..sets {
            for way in 0..ways {
                cbp.dccisw(set, way);
            }
        }

        ::asm::dsb();
        ::asm::isb();
    }

    /// Invalidates D-cache by address
    ///
    /// `addr`: the address to invalidate
    /// `size`: size of the memory block, in number of bytes
    ///
    /// Invalidates cache starting from the lowest 32-byte aligned address represented by `addr`,
    /// in blocks of 32 bytes until at least `size` bytes have been invalidated.
    #[inline]
    pub fn invalidate_dcache_by_address(&mut self, addr: usize, size: usize) {
        // No-op zero sized operations
        if size == 0 {
            return;
        }

        // NOTE(unsafe) All CBP registers are write-only and stateless
        let mut cbp = unsafe { cbp_new() };

        ::asm::dsb();

        // Cache lines are fixed to 32 bit on Cortex-M7 and not present in earlier Cortex-M
        const LINESIZE: usize = 32;
        let num_lines = ((size - 1) / LINESIZE) + 1;

        let mut addr = addr & 0xFFFF_FFE0;

        for _ in 0..num_lines {
            cbp.dcimvac(addr as u32);
            addr += LINESIZE;
        }

        ::asm::dsb();
        ::asm::isb();
    }

    /// Cleans D-cache by address
    ///
    /// `addr`: the address to clean
    /// `size`: size of the memory block, in number of bytes
    ///
    /// Cleans cache starting from the lowest 32-byte aligned address represented by `addr`,
    /// in blocks of 32 bytes until at least `size` bytes have been cleaned.
    #[inline]
    pub fn clean_dcache_by_address(&mut self, addr: usize, size: usize) {
        // No-op zero sized operations
        if size == 0 {
            return;
        }

        // NOTE(unsafe) All CBP registers are write-only and stateless
        let mut cbp = unsafe { cbp_new() };

        ::asm::dsb();

        // Cache lines are fixed to 32 bit on Cortex-M7 and not present in earlier Cortex-M
        const LINESIZE: usize = 32;
        let num_lines = ((size - 1) / LINESIZE) + 1;

        let mut addr = addr & 0xFFFF_FFE0;

        for _ in 0..num_lines {
            cbp.dccmvac(addr as u32);
            addr += LINESIZE;
        }

        ::asm::dsb();
        ::asm::isb();
    }

    /// Cleans and invalidates D-cache by address
    ///
    /// `addr`: the address to clean and invalidate
    /// `size`: size of the memory block, in number of bytes
    ///
    /// Cleans and invalidates cache starting from the lowest 32-byte aligned address represented
    /// by `addr`, in blocks of 32 bytes until at least `size` bytes have been cleaned and
    /// invalidated.
    #[inline]
    pub fn clean_invalidate_dcache_by_address(&mut self, addr: usize, size: usize) {
        // No-op zero sized operations
        if size == 0 {
            return;
        }

        // NOTE(unsafe) All CBP registers are write-only and stateless
        let mut cbp = unsafe { cbp_new() };

        ::asm::dsb();

        // Cache lines are fixed to 32 bit on Cortex-M7 and not present in earlier Cortex-M
        const LINESIZE: usize = 32;
        let num_lines = ((size - 1) / LINESIZE) + 1;

        let mut addr = addr & 0xFFFF_FFE0;

        for _ in 0..num_lines {
            cbp.dccimvac(addr as u32);
            addr += LINESIZE;
        }

        ::asm::dsb();
        ::asm::isb();
    }
}

const SCB_SCR_SLEEPDEEP: u32 = 0x1 << 2;

impl SCB {
    /// Set the SLEEPDEEP bit in the SCR register
    pub fn set_sleepdeep(&mut self) {
        unsafe {
            self.scr.modify(|scr| scr | SCB_SCR_SLEEPDEEP);
        }
    }

    /// Clear the SLEEPDEEP bit in the SCR register
    pub fn clear_sleepdeep(&mut self) {
        unsafe {
            self.scr.modify(|scr| scr & !SCB_SCR_SLEEPDEEP);
        }
    }
}

const SCB_AIRCR_VECTKEY: u32 = 0x05FA << 16;
const SCB_AIRCR_PRIGROUP_MASK: u32 = 0x5 << 8;
const SCB_AIRCR_SYSRESETREQ: u32 = 1 << 2;

impl SCB {
    /// Initiate a system reset request to reset the MCU
    pub fn system_reset(&mut self) -> ! {
        ::asm::dsb();
        unsafe {
            self.aircr.modify(
                |r| {
                    SCB_AIRCR_VECTKEY | // otherwise the write is ignored
            r & SCB_AIRCR_PRIGROUP_MASK | // keep priority group unchanged
            SCB_AIRCR_SYSRESETREQ
                }, // set the bit
            )
        };
        ::asm::dsb();
        loop {
            // wait for the reset
            ::asm::nop(); // avoid rust-lang/rust#28728
        }
    }
}

const SCB_ICSR_PENDSVSET: u32 = 1 << 28;
const SCB_ICSR_PENDSVCLR: u32 = 1 << 27;

const SCB_ICSR_PENDSTSET: u32 = 1 << 26;
const SCB_ICSR_PENDSTCLR: u32 = 1 << 25;

impl SCB {
    /// Set the PENDSVSET bit in the ICSR register which will pend the PendSV interrupt
    pub fn set_pendsv() {
        unsafe {
            (*Self::ptr()).icsr.write(SCB_ICSR_PENDSVSET);
        }
    }

    /// Check if PENDSVSET bit in the ICSR register is set meaning PendSV interrupt is pending
    pub fn is_pendsv_pending() -> bool {
        unsafe { (*Self::ptr()).icsr.read() & SCB_ICSR_PENDSVSET == SCB_ICSR_PENDSVSET }
    }

    /// Set the PENDSVCLR bit in the ICSR register which will clear a pending PendSV interrupt
    pub fn clear_pendsv() {
        unsafe {
            (*Self::ptr()).icsr.write(SCB_ICSR_PENDSVCLR);
        }
    }

    /// Set the PENDSTCLR bit in the ICSR register which will clear a pending SysTick interrupt
    #[inline]
    pub fn set_pendst() {
        unsafe {
            (*Self::ptr()).icsr.write(SCB_ICSR_PENDSTSET);
        }
    }

    /// Check if PENDSTSET bit in the ICSR register is set meaning SysTick interrupt is pending
    #[inline]
    pub fn is_pendst_pending() -> bool {
        unsafe { (*Self::ptr()).icsr.read() & SCB_ICSR_PENDSTSET == SCB_ICSR_PENDSTSET }
    }

    /// Set the PENDSTCLR bit in the ICSR register which will clear a pending SysTick interrupt
    #[inline]
    pub fn clear_pendst() {
        unsafe {
            (*Self::ptr()).icsr.write(SCB_ICSR_PENDSTCLR);
        }
    }
}

fn system_handler_index(sh: &SystemHandler) -> u8 {
    match *sh {
        #[cfg(not(armv6m))]
        SystemHandler::MemoryManagement => 4,
        #[cfg(not(armv6m))]
        SystemHandler::BusFault => 5,
        #[cfg(not(armv6m))]
        SystemHandler::UsageFault => 6,
        #[cfg(any(armv8m, target_arch = "x86_64"))]
        SystemHandler::SecureFault => 7,
        SystemHandler::SVCall => 11,
        #[cfg(not(armv6m))]
        SystemHandler::DebugMonitor => 12,
        SystemHandler::PendSV => 14,
        SystemHandler::SysTick => 15,
    }
}

impl SCB {
    /// Returns the hardware priority of `system_handler`
    ///
    /// *NOTE*: Hardware priority does not exactly match logical priority levels. See
    /// [`NVIC.get_priority`](struct.NVIC.html#method.get_priority) for more details.
    pub fn get_priority(system_handler: SystemHandler) -> u8 {
        let index = system_handler_index(&system_handler);

        #[cfg(not(armv6m))]
        {
            // NOTE(unsafe) atomic read with no side effects
            unsafe { (*Self::ptr()).shpr[usize::from(index - 4)].read() }
        }

        #[cfg(armv6m)]
        {
            // NOTE(unsafe) atomic read with no side effects
            let shpr = unsafe { (*Self::ptr()).shpr[usize::from((index - 8) / 4)].read() };
            let prio = (shpr >> (8 * (index % 4))) & 0x000000ff;
            prio as u8
        }
    }

    /// Sets the hardware priority of `system_handler` to `prio`
    ///
    /// *NOTE*: Hardware priority does not exactly match logical priority levels. See
    /// [`NVIC.get_priority`](struct.NVIC.html#method.get_priority) for more details.
    ///
    /// On ARMv6-M, updating a system handler priority requires a read-modify-write operation. On
    /// ARMv7-M, the operation is performed in a single, atomic write operation.
    ///
    /// # Unsafety
    ///
    /// Changing priority levels can break priority-based critical sections (see
    /// [`register::basepri`](../register/basepri/index.html)) and compromise memory safety.
    pub unsafe fn set_priority(&mut self, system_handler: SystemHandler, prio: u8) {
        let index = system_handler_index(&system_handler);

        #[cfg(not(armv6m))]
        {
            self.shpr[usize::from(index - 4)].write(prio)
        }

        #[cfg(armv6m)]
        {
            self.shpr[usize::from((index - 8) / 4)].modify(|value| {
                let shift = 8 * (index % 4);
                let mask = 0x000000ff << shift;
                let prio = u32::from(prio) << shift;

                (value & !mask) | prio
            });
        }
    }
}