cranelift_bforest/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
//! A forest of B+-trees.
//!
//! This crate provides a data structures representing a set of small ordered sets or maps.
//! It is implemented as a forest of B+-trees all allocating nodes out of the same pool.
//!
//! **These are not general purpose data structures that are somehow magically faster that the
//! standard library's `BTreeSet` and `BTreeMap` types.**
//!
//! The tradeoffs are different:
//!
//! - Keys and values are expected to be small and copyable. We optimize for 32-bit types.
//! - A comparator object is used to compare keys, allowing smaller "context free" keys.
//! - Empty trees have a very small 32-bit footprint.
//! - All the trees in a forest can be cleared in constant time.
#![deny(missing_docs)]
#![no_std]
#[cfg(test)]
extern crate alloc;
#[macro_use]
extern crate cranelift_entity as entity;
use crate::entity::packed_option;
use core::borrow::BorrowMut;
use core::cmp::Ordering;
mod map;
mod node;
mod path;
mod pool;
mod set;
pub use self::map::{Map, MapCursor, MapForest, MapIter};
pub use self::set::{Set, SetCursor, SetForest, SetIter};
use self::node::NodeData;
use self::path::Path;
use self::pool::NodePool;
/// The maximum branching factor of an inner node in a B+-tree.
/// The minimum number of outgoing edges is `INNER_SIZE/2`.
const INNER_SIZE: usize = 8;
/// Given the worst case branching factor of `INNER_SIZE/2` = 4, this is the
/// worst case path length from the root node to a leaf node in a tree with 2^32
/// entries. We would run out of node references before we hit `MAX_PATH`.
const MAX_PATH: usize = 16;
/// Key comparator.
///
/// Keys don't need to implement `Ord`. They are compared using a comparator object which
/// provides a context for comparison.
pub trait Comparator<K>
where
K: Copy,
{
/// Compare keys `a` and `b`.
///
/// This relation must provide a total ordering or the key space.
fn cmp(&self, a: K, b: K) -> Ordering;
/// Binary search for `k` in an ordered slice.
///
/// Assume that `s` is already sorted according to this ordering, search for the key `k`.
///
/// Returns `Ok(idx)` if `k` was found in the slice or `Err(idx)` with the position where it
/// should be inserted to preserve the ordering.
fn search(&self, k: K, s: &[K]) -> Result<usize, usize> {
s.binary_search_by(|x| self.cmp(*x, k))
}
}
/// Trivial comparator that doesn't actually provide any context.
impl<K> Comparator<K> for ()
where
K: Copy + Ord,
{
fn cmp(&self, a: K, b: K) -> Ordering {
a.cmp(&b)
}
}
/// Family of types shared by the map and set forest implementations.
trait Forest {
/// The key type is present for both sets and maps.
type Key: Copy;
/// The value type is `()` for sets.
type Value: Copy;
/// An array of keys for the leaf nodes.
type LeafKeys: Copy + BorrowMut<[Self::Key]>;
/// An array of values for the leaf nodes.
type LeafValues: Copy + BorrowMut<[Self::Value]>;
/// Splat a single key into a whole array.
fn splat_key(key: Self::Key) -> Self::LeafKeys;
/// Splat a single value inst a whole array
fn splat_value(value: Self::Value) -> Self::LeafValues;
}
/// A reference to a B+-tree node.
#[derive(Clone, Copy, PartialEq, Eq)]
struct Node(u32);
entity_impl!(Node, "node");
/// Empty type to be used as the "value" in B-trees representing sets.
#[derive(Clone, Copy)]
struct SetValue();
/// Insert `x` into `s` at position `i`, pushing out the last element.
fn slice_insert<T: Copy>(s: &mut [T], i: usize, x: T) {
for j in (i + 1..s.len()).rev() {
s[j] = s[j - 1];
}
s[i] = x;
}
/// Shift elements in `s` to the left by `n` positions.
fn slice_shift<T: Copy>(s: &mut [T], n: usize) {
for j in 0..s.len() - n {
s[j] = s[j + n];
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::entity::EntityRef;
/// An opaque reference to a basic block in a function.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Block(u32);
entity_impl!(Block, "block");
#[test]
fn comparator() {
let block1 = Block::new(1);
let block2 = Block::new(2);
let block3 = Block::new(3);
let block4 = Block::new(4);
let vals = [block1, block2, block4];
let comp = ();
assert_eq!(comp.search(block1, &vals), Ok(0));
assert_eq!(comp.search(block3, &vals), Err(2));
assert_eq!(comp.search(block4, &vals), Ok(2));
}
#[test]
fn slice_insertion() {
let mut a = ['a', 'b', 'c', 'd'];
slice_insert(&mut a[0..1], 0, 'e');
assert_eq!(a, ['e', 'b', 'c', 'd']);
slice_insert(&mut a, 0, 'a');
assert_eq!(a, ['a', 'e', 'b', 'c']);
slice_insert(&mut a, 3, 'g');
assert_eq!(a, ['a', 'e', 'b', 'g']);
slice_insert(&mut a, 1, 'h');
assert_eq!(a, ['a', 'h', 'e', 'b']);
}
#[test]
fn slice_shifting() {
let mut a = ['a', 'b', 'c', 'd'];
slice_shift(&mut a[0..1], 1);
assert_eq!(a, ['a', 'b', 'c', 'd']);
slice_shift(&mut a[1..], 1);
assert_eq!(a, ['a', 'c', 'd', 'd']);
slice_shift(&mut a, 2);
assert_eq!(a, ['d', 'd', 'd', 'd']);
}
}