use cranelift_codegen_shared::condcodes::IntCC;
use cranelift_entity::{entity_impl, PrimaryMap};
use std::collections::HashMap;
use std::fmt;
use std::fmt::{Display, Error, Formatter};
use std::rc::Rc;
use crate::cdsl::camel_case;
use crate::cdsl::formats::{FormatField, InstructionFormat};
use crate::cdsl::operands::Operand;
use crate::cdsl::type_inference::Constraint;
use crate::cdsl::types::{LaneType, ReferenceType, ValueType, VectorType};
use crate::cdsl::typevar::TypeVar;
use crate::shared::formats::Formats;
use crate::shared::types::{Bool, Float, Int, Reference};
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub(crate) struct OpcodeNumber(u32);
entity_impl!(OpcodeNumber);
pub(crate) type AllInstructions = PrimaryMap<OpcodeNumber, Instruction>;
pub(crate) struct InstructionGroupBuilder<'all_inst> {
all_instructions: &'all_inst mut AllInstructions,
own_instructions: Vec<Instruction>,
}
impl<'all_inst> InstructionGroupBuilder<'all_inst> {
pub fn new(all_instructions: &'all_inst mut AllInstructions) -> Self {
Self {
all_instructions,
own_instructions: Vec::new(),
}
}
pub fn push(&mut self, builder: InstructionBuilder) {
let opcode_number = OpcodeNumber(self.all_instructions.next_key().as_u32());
let inst = builder.build(opcode_number);
self.own_instructions.push(inst.clone());
self.all_instructions.push(inst);
}
pub fn build(self) -> InstructionGroup {
InstructionGroup {
instructions: self.own_instructions,
}
}
}
pub(crate) struct InstructionGroup {
instructions: Vec<Instruction>,
}
impl InstructionGroup {
pub fn by_name(&self, name: &'static str) -> &Instruction {
self.instructions
.iter()
.find(|inst| inst.name == name)
.unwrap_or_else(|| panic!("unexisting instruction with name {}", name))
}
}
pub(crate) trait Bindable {
fn bind(&self, parameter: impl Into<BindParameter>) -> BoundInstruction;
}
#[derive(Debug)]
pub(crate) struct PolymorphicInfo {
pub use_typevar_operand: bool,
pub ctrl_typevar: TypeVar,
pub other_typevars: Vec<TypeVar>,
}
#[derive(Debug)]
pub(crate) struct InstructionContent {
pub name: String,
pub camel_name: String,
pub opcode_number: OpcodeNumber,
pub doc: String,
pub operands_in: Vec<Operand>,
pub operands_out: Vec<Operand>,
pub constraints: Vec<Constraint>,
pub format: Rc<InstructionFormat>,
pub polymorphic_info: Option<PolymorphicInfo>,
pub value_opnums: Vec<usize>,
pub imm_opnums: Vec<usize>,
pub value_results: Vec<usize>,
pub is_terminator: bool,
pub is_branch: bool,
pub is_indirect_branch: bool,
pub is_call: bool,
pub is_return: bool,
pub is_ghost: bool,
pub can_load: bool,
pub can_store: bool,
pub can_trap: bool,
pub other_side_effects: bool,
pub writes_cpu_flags: bool,
pub clobbers_all_regs: bool,
}
impl InstructionContent {
pub fn snake_name(&self) -> &str {
if &self.name == "return" {
"return_"
} else {
&self.name
}
}
pub fn all_typevars(&self) -> Vec<&TypeVar> {
match &self.polymorphic_info {
Some(poly) => {
let mut result = vec![&poly.ctrl_typevar];
result.extend(&poly.other_typevars);
result
}
None => Vec::new(),
}
}
}
pub(crate) type Instruction = Rc<InstructionContent>;
impl Bindable for Instruction {
fn bind(&self, parameter: impl Into<BindParameter>) -> BoundInstruction {
BoundInstruction::new(self).bind(parameter)
}
}
impl fmt::Display for InstructionContent {
fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
if !self.operands_out.is_empty() {
let operands_out = self
.operands_out
.iter()
.map(|op| op.name)
.collect::<Vec<_>>()
.join(", ");
fmt.write_str(&operands_out)?;
fmt.write_str(" = ")?;
}
fmt.write_str(&self.name)?;
if !self.operands_in.is_empty() {
let operands_in = self
.operands_in
.iter()
.map(|op| op.name)
.collect::<Vec<_>>()
.join(", ");
fmt.write_str(" ")?;
fmt.write_str(&operands_in)?;
}
Ok(())
}
}
pub(crate) struct InstructionBuilder {
name: String,
doc: String,
format: Rc<InstructionFormat>,
operands_in: Option<Vec<Operand>>,
operands_out: Option<Vec<Operand>>,
constraints: Option<Vec<Constraint>>,
is_terminator: bool,
is_branch: bool,
is_indirect_branch: bool,
is_call: bool,
is_return: bool,
is_ghost: bool,
can_load: bool,
can_store: bool,
can_trap: bool,
other_side_effects: bool,
clobbers_all_regs: bool,
}
impl InstructionBuilder {
pub fn new<S: Into<String>>(name: S, doc: S, format: &Rc<InstructionFormat>) -> Self {
Self {
name: name.into(),
doc: doc.into(),
format: format.clone(),
operands_in: None,
operands_out: None,
constraints: None,
is_terminator: false,
is_branch: false,
is_indirect_branch: false,
is_call: false,
is_return: false,
is_ghost: false,
can_load: false,
can_store: false,
can_trap: false,
other_side_effects: false,
clobbers_all_regs: false,
}
}
pub fn operands_in(mut self, operands: Vec<&Operand>) -> Self {
assert!(self.operands_in.is_none());
self.operands_in = Some(operands.iter().map(|x| (*x).clone()).collect());
self
}
pub fn operands_out(mut self, operands: Vec<&Operand>) -> Self {
assert!(self.operands_out.is_none());
self.operands_out = Some(operands.iter().map(|x| (*x).clone()).collect());
self
}
pub fn constraints(mut self, constraints: Vec<Constraint>) -> Self {
assert!(self.constraints.is_none());
self.constraints = Some(constraints);
self
}
#[allow(clippy::wrong_self_convention)]
pub fn is_terminator(mut self, val: bool) -> Self {
self.is_terminator = val;
self
}
#[allow(clippy::wrong_self_convention)]
pub fn is_branch(mut self, val: bool) -> Self {
self.is_branch = val;
self
}
#[allow(clippy::wrong_self_convention)]
pub fn is_indirect_branch(mut self, val: bool) -> Self {
self.is_indirect_branch = val;
self
}
#[allow(clippy::wrong_self_convention)]
pub fn is_call(mut self, val: bool) -> Self {
self.is_call = val;
self
}
#[allow(clippy::wrong_self_convention)]
pub fn is_return(mut self, val: bool) -> Self {
self.is_return = val;
self
}
#[allow(clippy::wrong_self_convention)]
pub fn is_ghost(mut self, val: bool) -> Self {
self.is_ghost = val;
self
}
pub fn can_load(mut self, val: bool) -> Self {
self.can_load = val;
self
}
pub fn can_store(mut self, val: bool) -> Self {
self.can_store = val;
self
}
pub fn can_trap(mut self, val: bool) -> Self {
self.can_trap = val;
self
}
pub fn other_side_effects(mut self, val: bool) -> Self {
self.other_side_effects = val;
self
}
pub fn clobbers_all_regs(mut self, val: bool) -> Self {
self.clobbers_all_regs = val;
self
}
fn build(self, opcode_number: OpcodeNumber) -> Instruction {
let operands_in = self.operands_in.unwrap_or_else(Vec::new);
let operands_out = self.operands_out.unwrap_or_else(Vec::new);
let mut value_opnums = Vec::new();
let mut imm_opnums = Vec::new();
for (i, op) in operands_in.iter().enumerate() {
if op.is_value() {
value_opnums.push(i);
} else if op.is_immediate_or_entityref() {
imm_opnums.push(i);
} else {
assert!(op.is_varargs());
}
}
let value_results = operands_out
.iter()
.enumerate()
.filter_map(|(i, op)| if op.is_value() { Some(i) } else { None })
.collect();
verify_format(&self.name, &operands_in, &self.format);
let polymorphic_info =
verify_polymorphic(&operands_in, &operands_out, &self.format, &value_opnums);
let writes_cpu_flags = operands_out.iter().any(|op| op.is_cpu_flags());
let camel_name = camel_case(&self.name);
Rc::new(InstructionContent {
name: self.name,
camel_name,
opcode_number,
doc: self.doc,
operands_in,
operands_out,
constraints: self.constraints.unwrap_or_else(Vec::new),
format: self.format,
polymorphic_info,
value_opnums,
value_results,
imm_opnums,
is_terminator: self.is_terminator,
is_branch: self.is_branch,
is_indirect_branch: self.is_indirect_branch,
is_call: self.is_call,
is_return: self.is_return,
is_ghost: self.is_ghost,
can_load: self.can_load,
can_store: self.can_store,
can_trap: self.can_trap,
other_side_effects: self.other_side_effects,
writes_cpu_flags,
clobbers_all_regs: self.clobbers_all_regs,
})
}
}
#[derive(Clone)]
pub(crate) enum ValueTypeOrAny {
ValueType(ValueType),
Any,
}
impl ValueTypeOrAny {
pub fn expect(self, msg: &str) -> ValueType {
match self {
ValueTypeOrAny::ValueType(vt) => vt,
ValueTypeOrAny::Any => panic!(format!("Unexpected Any: {}", msg)),
}
}
}
type VectorBitWidth = u64;
pub(crate) enum BindParameter {
Any,
Lane(LaneType),
Vector(LaneType, VectorBitWidth),
Reference(ReferenceType),
Immediate(Immediate),
}
pub(crate) fn vector(parameter: impl Into<LaneType>, vector_size: VectorBitWidth) -> BindParameter {
BindParameter::Vector(parameter.into(), vector_size)
}
impl From<Int> for BindParameter {
fn from(ty: Int) -> Self {
BindParameter::Lane(ty.into())
}
}
impl From<Bool> for BindParameter {
fn from(ty: Bool) -> Self {
BindParameter::Lane(ty.into())
}
}
impl From<Float> for BindParameter {
fn from(ty: Float) -> Self {
BindParameter::Lane(ty.into())
}
}
impl From<LaneType> for BindParameter {
fn from(ty: LaneType) -> Self {
BindParameter::Lane(ty)
}
}
impl From<Reference> for BindParameter {
fn from(ty: Reference) -> Self {
BindParameter::Reference(ty.into())
}
}
impl From<Immediate> for BindParameter {
fn from(imm: Immediate) -> Self {
BindParameter::Immediate(imm)
}
}
#[derive(Clone)]
pub(crate) enum Immediate {
IntCC(IntCC),
}
impl Display for Immediate {
fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
match self {
Immediate::IntCC(x) => write!(f, "IntCC::{:?}", x),
}
}
}
#[derive(Clone)]
pub(crate) struct BoundInstruction {
pub inst: Instruction,
pub value_types: Vec<ValueTypeOrAny>,
pub immediate_values: Vec<Immediate>,
}
impl BoundInstruction {
fn new(inst: &Instruction) -> Self {
BoundInstruction {
inst: inst.clone(),
value_types: vec![],
immediate_values: vec![],
}
}
fn verify_bindings(&self) -> Result<(), String> {
if !self.value_types.is_empty() {
match &self.inst.polymorphic_info {
Some(poly) => {
if self.value_types.len() > 1 + poly.other_typevars.len() {
return Err(format!(
"trying to bind too many types for {}",
self.inst.name
));
}
}
None => {
return Err(format!(
"trying to bind a type for {} which is not a polymorphic instruction",
self.inst.name
));
}
}
}
let immediate_count = self
.inst
.operands_in
.iter()
.filter(|o| o.is_immediate_or_entityref())
.count();
if self.immediate_values.len() > immediate_count {
return Err(format!(
"trying to bind too many immediates ({}) to instruction {} which only expects {} \
immediates",
self.immediate_values.len(),
self.inst.name,
immediate_count
));
}
Ok(())
}
}
impl Bindable for BoundInstruction {
fn bind(&self, parameter: impl Into<BindParameter>) -> BoundInstruction {
let mut modified = self.clone();
match parameter.into() {
BindParameter::Any => modified.value_types.push(ValueTypeOrAny::Any),
BindParameter::Lane(lane_type) => modified
.value_types
.push(ValueTypeOrAny::ValueType(lane_type.into())),
BindParameter::Vector(lane_type, vector_size_in_bits) => {
let num_lanes = vector_size_in_bits / lane_type.lane_bits();
assert!(
num_lanes >= 2,
"Minimum lane number for bind_vector is 2, found {}.",
num_lanes,
);
let vector_type = ValueType::Vector(VectorType::new(lane_type, num_lanes));
modified
.value_types
.push(ValueTypeOrAny::ValueType(vector_type));
}
BindParameter::Reference(reference_type) => {
modified
.value_types
.push(ValueTypeOrAny::ValueType(reference_type.into()));
}
BindParameter::Immediate(immediate) => modified.immediate_values.push(immediate),
}
modified.verify_bindings().unwrap();
modified
}
}
fn verify_format(inst_name: &str, operands_in: &[Operand], format: &InstructionFormat) {
let mut num_values = 0;
let mut num_immediates = 0;
for operand in operands_in.iter() {
if operand.is_varargs() {
assert!(
format.has_value_list,
"instruction {} has varargs, but its format {} doesn't have a value list; you may \
need to use a different format.",
inst_name, format.name
);
}
if operand.is_value() {
num_values += 1;
}
if operand.is_immediate_or_entityref() {
if let Some(format_field) = format.imm_fields.get(num_immediates) {
assert_eq!(
format_field.kind.rust_field_name,
operand.kind.rust_field_name,
"{}th operand of {} should be {} (according to format), not {} (according to \
inst definition). You may need to use a different format.",
num_immediates,
inst_name,
format_field.kind.rust_field_name,
operand.kind.rust_field_name
);
num_immediates += 1;
}
}
}
assert_eq!(
num_values, format.num_value_operands,
"inst {} doesnt' have as many value input operand as its format {} declares; you may need \
to use a different format.",
inst_name, format.name
);
assert_eq!(
num_immediates,
format.imm_fields.len(),
"inst {} doesn't have as many immediate input \
operands as its format {} declares; you may need to use a different format.",
inst_name,
format.name
);
}
fn verify_polymorphic(
operands_in: &[Operand],
operands_out: &[Operand],
format: &InstructionFormat,
value_opnums: &[usize],
) -> Option<PolymorphicInfo> {
let is_polymorphic = operands_in
.iter()
.any(|op| op.is_value() && op.type_var().unwrap().free_typevar().is_some())
|| operands_out
.iter()
.any(|op| op.is_value() && op.type_var().unwrap().free_typevar().is_some());
if !is_polymorphic {
return None;
}
let tv_op = format.typevar_operand;
let mut maybe_error_message = None;
if let Some(tv_op) = tv_op {
if tv_op < value_opnums.len() {
let op_num = value_opnums[tv_op];
let tv = operands_in[op_num].type_var().unwrap();
let free_typevar = tv.free_typevar();
if (free_typevar.is_some() && tv == &free_typevar.unwrap())
|| tv.singleton_type().is_some()
{
match is_ctrl_typevar_candidate(tv, &operands_in, &operands_out) {
Ok(other_typevars) => {
return Some(PolymorphicInfo {
use_typevar_operand: true,
ctrl_typevar: tv.clone(),
other_typevars,
});
}
Err(error_message) => {
maybe_error_message = Some(error_message);
}
}
}
}
};
if operands_out.is_empty() {
match maybe_error_message {
Some(msg) => panic!(msg),
None => panic!("typevar_operand must be a free type variable"),
}
}
let tv = operands_out[0].type_var().unwrap();
let free_typevar = tv.free_typevar();
if free_typevar.is_some() && tv != &free_typevar.unwrap() {
panic!("first result must be a free type variable");
}
let other_typevars = is_ctrl_typevar_candidate(tv, &operands_in, &operands_out).unwrap();
Some(PolymorphicInfo {
use_typevar_operand: false,
ctrl_typevar: tv.clone(),
other_typevars,
})
}
fn is_ctrl_typevar_candidate(
ctrl_typevar: &TypeVar,
operands_in: &[Operand],
operands_out: &[Operand],
) -> Result<Vec<TypeVar>, String> {
let mut other_typevars = Vec::new();
for input in operands_in {
if !input.is_value() {
continue;
}
let typ = input.type_var().unwrap();
let free_typevar = typ.free_typevar();
if free_typevar.is_none() {
continue;
}
let free_typevar = free_typevar.unwrap();
if &free_typevar == ctrl_typevar {
continue;
}
if typ != &free_typevar {
return Err(format!(
"{:?}: type variable {} must be derived from {:?} while it is derived from {:?}",
input, typ.name, ctrl_typevar, free_typevar
));
}
for other_tv in &other_typevars {
if &free_typevar == other_tv {
return Err(format!(
"non-controlling type variable {} can't be used more than once",
free_typevar.name
));
}
}
other_typevars.push(free_typevar);
}
for result in operands_out {
if !result.is_value() {
continue;
}
let typ = result.type_var().unwrap();
let free_typevar = typ.free_typevar();
if free_typevar.is_none() || &free_typevar.unwrap() == ctrl_typevar {
continue;
}
return Err("type variable in output not derived from ctrl_typevar".into());
}
Ok(other_typevars)
}
#[derive(Clone, Hash, PartialEq, Eq)]
pub(crate) enum FormatPredicateKind {
IsEqual(String),
IsSignedInt(usize, usize),
IsUnsignedInt(usize, usize),
IsZeroInt,
IsZero32BitFloat,
IsZero64BitFloat,
IsAllZeroes,
IsAllOnes,
LengthEquals(usize),
IsColocatedFunc,
IsColocatedData,
}
#[derive(Clone, Hash, PartialEq, Eq)]
pub(crate) struct FormatPredicateNode {
format_name: &'static str,
member_name: &'static str,
kind: FormatPredicateKind,
}
impl FormatPredicateNode {
fn new(
format: &InstructionFormat,
field_name: &'static str,
kind: FormatPredicateKind,
) -> Self {
let member_name = format.imm_by_name(field_name).member;
Self {
format_name: format.name,
member_name,
kind,
}
}
fn new_raw(
format: &InstructionFormat,
member_name: &'static str,
kind: FormatPredicateKind,
) -> Self {
Self {
format_name: format.name,
member_name,
kind,
}
}
fn destructuring_member_name(&self) -> &'static str {
match &self.kind {
FormatPredicateKind::LengthEquals(_) => {
assert!(self.member_name == "args");
"ref args"
}
_ => self.member_name,
}
}
fn rust_predicate(&self) -> String {
match &self.kind {
FormatPredicateKind::IsEqual(arg) => {
format!("predicates::is_equal({}, {})", self.member_name, arg)
}
FormatPredicateKind::IsSignedInt(width, scale) => format!(
"predicates::is_signed_int({}, {}, {})",
self.member_name, width, scale
),
FormatPredicateKind::IsUnsignedInt(width, scale) => format!(
"predicates::is_unsigned_int({}, {}, {})",
self.member_name, width, scale
),
FormatPredicateKind::IsZeroInt => {
format!("predicates::is_zero_int({})", self.member_name)
}
FormatPredicateKind::IsZero32BitFloat => {
format!("predicates::is_zero_32_bit_float({})", self.member_name)
}
FormatPredicateKind::IsZero64BitFloat => {
format!("predicates::is_zero_64_bit_float({})", self.member_name)
}
FormatPredicateKind::IsAllZeroes => format!(
"predicates::is_all_zeroes(func.dfg.constants.get({}))",
self.member_name
),
FormatPredicateKind::IsAllOnes => format!(
"predicates::is_all_ones(func.dfg.constants.get({}))",
self.member_name
),
FormatPredicateKind::LengthEquals(num) => format!(
"predicates::has_length_of({}, {}, func)",
self.member_name, num
),
FormatPredicateKind::IsColocatedFunc => {
format!("predicates::is_colocated_func({}, func)", self.member_name,)
}
FormatPredicateKind::IsColocatedData => {
format!("predicates::is_colocated_data({}, func)", self.member_name)
}
}
}
}
#[derive(Clone, Hash, PartialEq, Eq)]
pub(crate) enum TypePredicateNode {
TypeVarCheck(usize, String),
CtrlTypeVarCheck(String),
}
impl TypePredicateNode {
fn rust_predicate(&self, func_str: &str) -> String {
match self {
TypePredicateNode::TypeVarCheck(index, value_type_name) => format!(
"{}.dfg.value_type(args[{}]) == {}",
func_str, index, value_type_name
),
TypePredicateNode::CtrlTypeVarCheck(value_type_name) => {
format!("{}.dfg.ctrl_typevar(inst) == {}", func_str, value_type_name)
}
}
}
}
#[derive(Clone, Hash, PartialEq, Eq)]
pub(crate) enum InstructionPredicateNode {
FormatPredicate(FormatPredicateNode),
TypePredicate(TypePredicateNode),
And(Vec<InstructionPredicateNode>),
Or(Vec<InstructionPredicateNode>),
}
impl InstructionPredicateNode {
fn rust_predicate(&self, func_str: &str) -> String {
match self {
InstructionPredicateNode::FormatPredicate(node) => node.rust_predicate(),
InstructionPredicateNode::TypePredicate(node) => node.rust_predicate(func_str),
InstructionPredicateNode::And(nodes) => nodes
.iter()
.map(|x| x.rust_predicate(func_str))
.collect::<Vec<_>>()
.join(" && "),
InstructionPredicateNode::Or(nodes) => nodes
.iter()
.map(|x| x.rust_predicate(func_str))
.collect::<Vec<_>>()
.join(" || "),
}
}
pub fn format_destructuring_member_name(&self) -> &str {
match self {
InstructionPredicateNode::FormatPredicate(format_pred) => {
format_pred.destructuring_member_name()
}
_ => panic!("Only for leaf format predicates"),
}
}
pub fn format_name(&self) -> &str {
match self {
InstructionPredicateNode::FormatPredicate(format_pred) => format_pred.format_name,
_ => panic!("Only for leaf format predicates"),
}
}
pub fn is_type_predicate(&self) -> bool {
match self {
InstructionPredicateNode::FormatPredicate(_)
| InstructionPredicateNode::And(_)
| InstructionPredicateNode::Or(_) => false,
InstructionPredicateNode::TypePredicate(_) => true,
}
}
fn collect_leaves(&self) -> Vec<&InstructionPredicateNode> {
let mut ret = Vec::new();
match self {
InstructionPredicateNode::And(nodes) | InstructionPredicateNode::Or(nodes) => {
for node in nodes {
ret.extend(node.collect_leaves());
}
}
_ => ret.push(self),
}
ret
}
}
#[derive(Clone, Hash, PartialEq, Eq)]
pub(crate) struct InstructionPredicate {
node: Option<InstructionPredicateNode>,
}
impl Into<InstructionPredicate> for InstructionPredicateNode {
fn into(self) -> InstructionPredicate {
InstructionPredicate { node: Some(self) }
}
}
impl InstructionPredicate {
pub fn new() -> Self {
Self { node: None }
}
pub fn unwrap(self) -> InstructionPredicateNode {
self.node.unwrap()
}
pub fn new_typevar_check(
inst: &Instruction,
type_var: &TypeVar,
value_type: &ValueType,
) -> InstructionPredicateNode {
let index = inst
.value_opnums
.iter()
.enumerate()
.find(|(_, &op_num)| inst.operands_in[op_num].type_var().unwrap() == type_var)
.unwrap()
.0;
InstructionPredicateNode::TypePredicate(TypePredicateNode::TypeVarCheck(
index,
value_type.rust_name(),
))
}
pub fn new_ctrl_typevar_check(value_type: &ValueType) -> InstructionPredicateNode {
InstructionPredicateNode::TypePredicate(TypePredicateNode::CtrlTypeVarCheck(
value_type.rust_name(),
))
}
pub fn new_is_field_equal(
format: &InstructionFormat,
field_name: &'static str,
imm_value: String,
) -> InstructionPredicateNode {
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
format,
field_name,
FormatPredicateKind::IsEqual(imm_value),
))
}
pub fn new_is_field_equal_ast(
format: &InstructionFormat,
field: &FormatField,
imm_value: String,
) -> InstructionPredicateNode {
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new_raw(
format,
field.member,
FormatPredicateKind::IsEqual(imm_value),
))
}
pub fn new_is_signed_int(
format: &InstructionFormat,
field_name: &'static str,
width: usize,
scale: usize,
) -> InstructionPredicateNode {
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
format,
field_name,
FormatPredicateKind::IsSignedInt(width, scale),
))
}
pub fn new_is_unsigned_int(
format: &InstructionFormat,
field_name: &'static str,
width: usize,
scale: usize,
) -> InstructionPredicateNode {
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
format,
field_name,
FormatPredicateKind::IsUnsignedInt(width, scale),
))
}
pub fn new_is_zero_int(
format: &InstructionFormat,
field_name: &'static str,
) -> InstructionPredicateNode {
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
format,
field_name,
FormatPredicateKind::IsZeroInt,
))
}
pub fn new_is_zero_32bit_float(
format: &InstructionFormat,
field_name: &'static str,
) -> InstructionPredicateNode {
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
format,
field_name,
FormatPredicateKind::IsZero32BitFloat,
))
}
pub fn new_is_zero_64bit_float(
format: &InstructionFormat,
field_name: &'static str,
) -> InstructionPredicateNode {
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
format,
field_name,
FormatPredicateKind::IsZero64BitFloat,
))
}
pub fn new_is_all_zeroes(
format: &InstructionFormat,
field_name: &'static str,
) -> InstructionPredicateNode {
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
format,
field_name,
FormatPredicateKind::IsAllZeroes,
))
}
pub fn new_is_all_ones(
format: &InstructionFormat,
field_name: &'static str,
) -> InstructionPredicateNode {
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
format,
field_name,
FormatPredicateKind::IsAllOnes,
))
}
pub fn new_length_equals(format: &InstructionFormat, size: usize) -> InstructionPredicateNode {
assert!(
format.has_value_list,
"the format must be variadic in number of arguments"
);
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new_raw(
format,
"args",
FormatPredicateKind::LengthEquals(size),
))
}
pub fn new_is_colocated_func(
format: &InstructionFormat,
field_name: &'static str,
) -> InstructionPredicateNode {
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
format,
field_name,
FormatPredicateKind::IsColocatedFunc,
))
}
pub fn new_is_colocated_data(formats: &Formats) -> InstructionPredicateNode {
let format = &formats.unary_global_value;
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
&*format,
"global_value",
FormatPredicateKind::IsColocatedData,
))
}
pub fn and(mut self, new_node: InstructionPredicateNode) -> Self {
let node = self.node;
let mut and_nodes = match node {
Some(node) => match node {
InstructionPredicateNode::And(nodes) => nodes,
InstructionPredicateNode::Or(_) => {
panic!("Can't mix and/or without implementing operator precedence!")
}
_ => vec![node],
},
_ => Vec::new(),
};
and_nodes.push(new_node);
self.node = Some(InstructionPredicateNode::And(and_nodes));
self
}
pub fn or(mut self, new_node: InstructionPredicateNode) -> Self {
let node = self.node;
let mut or_nodes = match node {
Some(node) => match node {
InstructionPredicateNode::Or(nodes) => nodes,
InstructionPredicateNode::And(_) => {
panic!("Can't mix and/or without implementing operator precedence!")
}
_ => vec![node],
},
_ => Vec::new(),
};
or_nodes.push(new_node);
self.node = Some(InstructionPredicateNode::Or(or_nodes));
self
}
pub fn rust_predicate(&self, func_str: &str) -> Option<String> {
self.node.as_ref().map(|root| root.rust_predicate(func_str))
}
pub fn type_predicate(&self, func_str: &str) -> Option<String> {
let node = self.node.as_ref().unwrap();
if node.is_type_predicate() {
Some(node.rust_predicate(func_str))
} else {
None
}
}
pub fn collect_leaves(&self) -> Vec<&InstructionPredicateNode> {
self.node.as_ref().unwrap().collect_leaves()
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub(crate) struct InstructionPredicateNumber(u32);
entity_impl!(InstructionPredicateNumber);
pub(crate) type InstructionPredicateMap =
PrimaryMap<InstructionPredicateNumber, InstructionPredicate>;
pub(crate) struct InstructionPredicateRegistry {
map: InstructionPredicateMap,
inverted_map: HashMap<InstructionPredicate, InstructionPredicateNumber>,
}
impl InstructionPredicateRegistry {
pub fn new() -> Self {
Self {
map: PrimaryMap::new(),
inverted_map: HashMap::new(),
}
}
pub fn insert(&mut self, predicate: InstructionPredicate) -> InstructionPredicateNumber {
match self.inverted_map.get(&predicate) {
Some(&found) => found,
None => {
let key = self.map.push(predicate.clone());
self.inverted_map.insert(predicate, key);
key
}
}
}
pub fn extract(self) -> InstructionPredicateMap {
self.map
}
}
pub(crate) enum InstSpec {
Inst(Instruction),
Bound(BoundInstruction),
}
impl InstSpec {
pub fn inst(&self) -> &Instruction {
match &self {
InstSpec::Inst(inst) => inst,
InstSpec::Bound(bound_inst) => &bound_inst.inst,
}
}
}
impl Bindable for InstSpec {
fn bind(&self, parameter: impl Into<BindParameter>) -> BoundInstruction {
match self {
InstSpec::Inst(inst) => inst.bind(parameter.into()),
InstSpec::Bound(inst) => inst.bind(parameter.into()),
}
}
}
impl Into<InstSpec> for &Instruction {
fn into(self) -> InstSpec {
InstSpec::Inst(self.clone())
}
}
impl Into<InstSpec> for BoundInstruction {
fn into(self) -> InstSpec {
InstSpec::Bound(self)
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::cdsl::formats::InstructionFormatBuilder;
use crate::cdsl::operands::{OperandKind, OperandKindFields};
use crate::cdsl::typevar::TypeSetBuilder;
use crate::shared::types::Int::{I32, I64};
fn field_to_operand(index: usize, field: OperandKindFields) -> Operand {
let name = Box::leak(index.to_string().into_boxed_str());
let kind = OperandKind::new(name, name, field);
let operand = Operand::new(name, kind);
operand
}
fn field_to_operands(types: Vec<OperandKindFields>) -> Vec<Operand> {
types
.iter()
.enumerate()
.map(|(i, f)| field_to_operand(i, f.clone()))
.collect()
}
fn build_fake_instruction(
inputs: Vec<OperandKindFields>,
outputs: Vec<OperandKindFields>,
) -> Instruction {
let mut format = InstructionFormatBuilder::new("fake");
for (i, f) in inputs.iter().enumerate() {
match f {
OperandKindFields::TypeVar(_) => format = format.value(),
OperandKindFields::ImmValue => {
format = format.imm(&field_to_operand(i, f.clone()).kind)
}
_ => {}
};
}
let format = format.build();
InstructionBuilder::new("fake", "A fake instruction for testing.", &format)
.operands_in(field_to_operands(inputs).iter().collect())
.operands_out(field_to_operands(outputs).iter().collect())
.build(OpcodeNumber(42))
}
#[test]
fn ensure_bound_instructions_can_bind_lane_types() {
let type1 = TypeSetBuilder::new().ints(8..64).build();
let in1 = OperandKindFields::TypeVar(TypeVar::new("a", "...", type1));
let inst = build_fake_instruction(vec![in1], vec![]);
inst.bind(LaneType::Int(I32));
}
#[test]
fn ensure_bound_instructions_can_bind_immediates() {
let inst = build_fake_instruction(vec![OperandKindFields::ImmValue], vec![]);
let bound_inst = inst.bind(Immediate::IntCC(IntCC::Equal));
assert!(bound_inst.verify_bindings().is_ok());
}
#[test]
#[should_panic]
fn ensure_instructions_fail_to_bind() {
let inst = build_fake_instruction(vec![], vec![]);
inst.bind(BindParameter::Lane(LaneType::Int(I32)));
}
#[test]
#[should_panic]
fn ensure_bound_instructions_fail_to_bind_too_many_types() {
let type1 = TypeSetBuilder::new().ints(8..64).build();
let in1 = OperandKindFields::TypeVar(TypeVar::new("a", "...", type1));
let inst = build_fake_instruction(vec![in1], vec![]);
inst.bind(LaneType::Int(I32)).bind(LaneType::Int(I64));
}
#[test]
#[should_panic]
fn ensure_instructions_fail_to_bind_too_many_immediates() {
let inst = build_fake_instruction(vec![OperandKindFields::ImmValue], vec![]);
inst.bind(BindParameter::Immediate(Immediate::IntCC(IntCC::Equal)))
.bind(BindParameter::Immediate(Immediate::IntCC(IntCC::Equal)));
}
}