1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
use crate::cdsl::ast::{constant, var, ExprBuilder, Literal};
use crate::cdsl::instructions::{vector, Bindable, InstructionGroup};
use crate::cdsl::types::{LaneType, ValueType};
use crate::cdsl::xform::TransformGroupBuilder;
use crate::shared::types::Float::{F32, F64};
use crate::shared::types::Int::{I16, I32, I64, I8};
use crate::shared::Definitions as SharedDefinitions;

#[allow(clippy::many_single_char_names)]
pub(crate) fn define(shared: &mut SharedDefinitions, x86_instructions: &InstructionGroup) {
    let mut group = TransformGroupBuilder::new(
        "x86_expand",
        r#"
    Legalize instructions by expansion.

    Use x86-specific instructions if needed."#,
    )
    .isa("x86")
    .chain_with(shared.transform_groups.by_name("expand_flags").id);

    // List of instructions.
    let insts = &shared.instructions;
    let band = insts.by_name("band");
    let bor = insts.by_name("bor");
    let clz = insts.by_name("clz");
    let ctz = insts.by_name("ctz");
    let fcmp = insts.by_name("fcmp");
    let fcvt_from_uint = insts.by_name("fcvt_from_uint");
    let fcvt_to_sint = insts.by_name("fcvt_to_sint");
    let fcvt_to_uint = insts.by_name("fcvt_to_uint");
    let fcvt_to_sint_sat = insts.by_name("fcvt_to_sint_sat");
    let fcvt_to_uint_sat = insts.by_name("fcvt_to_uint_sat");
    let fmax = insts.by_name("fmax");
    let fmin = insts.by_name("fmin");
    let iadd = insts.by_name("iadd");
    let iconst = insts.by_name("iconst");
    let imul = insts.by_name("imul");
    let ineg = insts.by_name("ineg");
    let isub = insts.by_name("isub");
    let ishl = insts.by_name("ishl");
    let ireduce = insts.by_name("ireduce");
    let popcnt = insts.by_name("popcnt");
    let sdiv = insts.by_name("sdiv");
    let selectif = insts.by_name("selectif");
    let smulhi = insts.by_name("smulhi");
    let srem = insts.by_name("srem");
    let tls_value = insts.by_name("tls_value");
    let udiv = insts.by_name("udiv");
    let umulhi = insts.by_name("umulhi");
    let ushr = insts.by_name("ushr");
    let ushr_imm = insts.by_name("ushr_imm");
    let urem = insts.by_name("urem");

    let x86_bsf = x86_instructions.by_name("x86_bsf");
    let x86_bsr = x86_instructions.by_name("x86_bsr");
    let x86_umulx = x86_instructions.by_name("x86_umulx");
    let x86_smulx = x86_instructions.by_name("x86_smulx");

    let imm = &shared.imm;

    // Shift by a 64-bit amount is equivalent to a shift by that amount mod 32, so we can reduce
    // the size of the shift amount. This is useful for x86_32, where an I64 shift amount is
    // not encodable.
    let a = var("a");
    let x = var("x");
    let y = var("y");
    let z = var("z");

    for &ty in &[I8, I16, I32] {
        let ishl_by_i64 = ishl.bind(ty).bind(I64);
        let ireduce = ireduce.bind(I32);
        group.legalize(
            def!(a = ishl_by_i64(x, y)),
            vec![def!(z = ireduce(y)), def!(a = ishl(x, z))],
        );
    }

    for &ty in &[I8, I16, I32] {
        let ushr_by_i64 = ushr.bind(ty).bind(I64);
        let ireduce = ireduce.bind(I32);
        group.legalize(
            def!(a = ushr_by_i64(x, y)),
            vec![def!(z = ireduce(y)), def!(a = ishl(x, z))],
        );
    }

    // Division and remainder.
    //
    // The srem expansion requires custom code because srem INT_MIN, -1 is not
    // allowed to trap. The other ops need to check avoid_div_traps.
    group.custom_legalize(sdiv, "expand_sdivrem");
    group.custom_legalize(srem, "expand_sdivrem");
    group.custom_legalize(udiv, "expand_udivrem");
    group.custom_legalize(urem, "expand_udivrem");

    // Double length (widening) multiplication.
    let a = var("a");
    let x = var("x");
    let y = var("y");
    let a1 = var("a1");
    let a2 = var("a2");
    let res_lo = var("res_lo");
    let res_hi = var("res_hi");

    group.legalize(
        def!(res_hi = umulhi(x, y)),
        vec![def!((res_lo, res_hi) = x86_umulx(x, y))],
    );

    group.legalize(
        def!(res_hi = smulhi(x, y)),
        vec![def!((res_lo, res_hi) = x86_smulx(x, y))],
    );

    // Floating point condition codes.
    //
    // The 8 condition codes in `supported_floatccs` are directly supported by a
    // `ucomiss` or `ucomisd` instruction. The remaining codes need legalization
    // patterns.

    let floatcc_eq = Literal::enumerator_for(&imm.floatcc, "eq");
    let floatcc_ord = Literal::enumerator_for(&imm.floatcc, "ord");
    let floatcc_ueq = Literal::enumerator_for(&imm.floatcc, "ueq");
    let floatcc_ne = Literal::enumerator_for(&imm.floatcc, "ne");
    let floatcc_uno = Literal::enumerator_for(&imm.floatcc, "uno");
    let floatcc_one = Literal::enumerator_for(&imm.floatcc, "one");

    // Equality needs an explicit `ord` test which checks the parity bit.
    group.legalize(
        def!(a = fcmp(floatcc_eq, x, y)),
        vec![
            def!(a1 = fcmp(floatcc_ord, x, y)),
            def!(a2 = fcmp(floatcc_ueq, x, y)),
            def!(a = band(a1, a2)),
        ],
    );
    group.legalize(
        def!(a = fcmp(floatcc_ne, x, y)),
        vec![
            def!(a1 = fcmp(floatcc_uno, x, y)),
            def!(a2 = fcmp(floatcc_one, x, y)),
            def!(a = bor(a1, a2)),
        ],
    );

    let floatcc_lt = &Literal::enumerator_for(&imm.floatcc, "lt");
    let floatcc_gt = &Literal::enumerator_for(&imm.floatcc, "gt");
    let floatcc_le = &Literal::enumerator_for(&imm.floatcc, "le");
    let floatcc_ge = &Literal::enumerator_for(&imm.floatcc, "ge");
    let floatcc_ugt = &Literal::enumerator_for(&imm.floatcc, "ugt");
    let floatcc_ult = &Literal::enumerator_for(&imm.floatcc, "ult");
    let floatcc_uge = &Literal::enumerator_for(&imm.floatcc, "uge");
    let floatcc_ule = &Literal::enumerator_for(&imm.floatcc, "ule");

    // Inequalities that need to be reversed.
    for &(cc, rev_cc) in &[
        (floatcc_lt, floatcc_gt),
        (floatcc_le, floatcc_ge),
        (floatcc_ugt, floatcc_ult),
        (floatcc_uge, floatcc_ule),
    ] {
        group.legalize(def!(a = fcmp(cc, x, y)), vec![def!(a = fcmp(rev_cc, y, x))]);
    }

    // We need to modify the CFG for min/max legalization.
    group.custom_legalize(fmin, "expand_minmax");
    group.custom_legalize(fmax, "expand_minmax");

    // Conversions from unsigned need special handling.
    group.custom_legalize(fcvt_from_uint, "expand_fcvt_from_uint");
    // Conversions from float to int can trap and modify the control flow graph.
    group.custom_legalize(fcvt_to_sint, "expand_fcvt_to_sint");
    group.custom_legalize(fcvt_to_uint, "expand_fcvt_to_uint");
    group.custom_legalize(fcvt_to_sint_sat, "expand_fcvt_to_sint_sat");
    group.custom_legalize(fcvt_to_uint_sat, "expand_fcvt_to_uint_sat");

    // Count leading and trailing zeroes, for baseline x86_64
    let c_minus_one = var("c_minus_one");
    let c_thirty_one = var("c_thirty_one");
    let c_thirty_two = var("c_thirty_two");
    let c_sixty_three = var("c_sixty_three");
    let c_sixty_four = var("c_sixty_four");
    let index1 = var("index1");
    let r2flags = var("r2flags");
    let index2 = var("index2");

    let intcc_eq = Literal::enumerator_for(&imm.intcc, "eq");
    let imm64_minus_one = Literal::constant(&imm.imm64, -1);
    let imm64_63 = Literal::constant(&imm.imm64, 63);
    group.legalize(
        def!(a = clz.I64(x)),
        vec![
            def!(c_minus_one = iconst(imm64_minus_one)),
            def!(c_sixty_three = iconst(imm64_63)),
            def!((index1, r2flags) = x86_bsr(x)),
            def!(index2 = selectif(intcc_eq, r2flags, c_minus_one, index1)),
            def!(a = isub(c_sixty_three, index2)),
        ],
    );

    let imm64_31 = Literal::constant(&imm.imm64, 31);
    group.legalize(
        def!(a = clz.I32(x)),
        vec![
            def!(c_minus_one = iconst(imm64_minus_one)),
            def!(c_thirty_one = iconst(imm64_31)),
            def!((index1, r2flags) = x86_bsr(x)),
            def!(index2 = selectif(intcc_eq, r2flags, c_minus_one, index1)),
            def!(a = isub(c_thirty_one, index2)),
        ],
    );

    let imm64_64 = Literal::constant(&imm.imm64, 64);
    group.legalize(
        def!(a = ctz.I64(x)),
        vec![
            def!(c_sixty_four = iconst(imm64_64)),
            def!((index1, r2flags) = x86_bsf(x)),
            def!(a = selectif(intcc_eq, r2flags, c_sixty_four, index1)),
        ],
    );

    let imm64_32 = Literal::constant(&imm.imm64, 32);
    group.legalize(
        def!(a = ctz.I32(x)),
        vec![
            def!(c_thirty_two = iconst(imm64_32)),
            def!((index1, r2flags) = x86_bsf(x)),
            def!(a = selectif(intcc_eq, r2flags, c_thirty_two, index1)),
        ],
    );

    // Population count for baseline x86_64
    let x = var("x");
    let r = var("r");

    let qv3 = var("qv3");
    let qv4 = var("qv4");
    let qv5 = var("qv5");
    let qv6 = var("qv6");
    let qv7 = var("qv7");
    let qv8 = var("qv8");
    let qv9 = var("qv9");
    let qv10 = var("qv10");
    let qv11 = var("qv11");
    let qv12 = var("qv12");
    let qv13 = var("qv13");
    let qv14 = var("qv14");
    let qv15 = var("qv15");
    let qc77 = var("qc77");
    #[allow(non_snake_case)]
    let qc0F = var("qc0F");
    let qc01 = var("qc01");

    let imm64_1 = Literal::constant(&imm.imm64, 1);
    let imm64_4 = Literal::constant(&imm.imm64, 4);
    group.legalize(
        def!(r = popcnt.I64(x)),
        vec![
            def!(qv3 = ushr_imm(x, imm64_1)),
            def!(qc77 = iconst(Literal::constant(&imm.imm64, 0x7777_7777_7777_7777))),
            def!(qv4 = band(qv3, qc77)),
            def!(qv5 = isub(x, qv4)),
            def!(qv6 = ushr_imm(qv4, imm64_1)),
            def!(qv7 = band(qv6, qc77)),
            def!(qv8 = isub(qv5, qv7)),
            def!(qv9 = ushr_imm(qv7, imm64_1)),
            def!(qv10 = band(qv9, qc77)),
            def!(qv11 = isub(qv8, qv10)),
            def!(qv12 = ushr_imm(qv11, imm64_4)),
            def!(qv13 = iadd(qv11, qv12)),
            def!(qc0F = iconst(Literal::constant(&imm.imm64, 0x0F0F_0F0F_0F0F_0F0F))),
            def!(qv14 = band(qv13, qc0F)),
            def!(qc01 = iconst(Literal::constant(&imm.imm64, 0x0101_0101_0101_0101))),
            def!(qv15 = imul(qv14, qc01)),
            def!(r = ushr_imm(qv15, Literal::constant(&imm.imm64, 56))),
        ],
    );

    let lv3 = var("lv3");
    let lv4 = var("lv4");
    let lv5 = var("lv5");
    let lv6 = var("lv6");
    let lv7 = var("lv7");
    let lv8 = var("lv8");
    let lv9 = var("lv9");
    let lv10 = var("lv10");
    let lv11 = var("lv11");
    let lv12 = var("lv12");
    let lv13 = var("lv13");
    let lv14 = var("lv14");
    let lv15 = var("lv15");
    let lc77 = var("lc77");
    #[allow(non_snake_case)]
    let lc0F = var("lc0F");
    let lc01 = var("lc01");

    group.legalize(
        def!(r = popcnt.I32(x)),
        vec![
            def!(lv3 = ushr_imm(x, imm64_1)),
            def!(lc77 = iconst(Literal::constant(&imm.imm64, 0x7777_7777))),
            def!(lv4 = band(lv3, lc77)),
            def!(lv5 = isub(x, lv4)),
            def!(lv6 = ushr_imm(lv4, imm64_1)),
            def!(lv7 = band(lv6, lc77)),
            def!(lv8 = isub(lv5, lv7)),
            def!(lv9 = ushr_imm(lv7, imm64_1)),
            def!(lv10 = band(lv9, lc77)),
            def!(lv11 = isub(lv8, lv10)),
            def!(lv12 = ushr_imm(lv11, imm64_4)),
            def!(lv13 = iadd(lv11, lv12)),
            def!(lc0F = iconst(Literal::constant(&imm.imm64, 0x0F0F_0F0F))),
            def!(lv14 = band(lv13, lc0F)),
            def!(lc01 = iconst(Literal::constant(&imm.imm64, 0x0101_0101))),
            def!(lv15 = imul(lv14, lc01)),
            def!(r = ushr_imm(lv15, Literal::constant(&imm.imm64, 24))),
        ],
    );

    group.custom_legalize(ineg, "convert_ineg");

    group.custom_legalize(tls_value, "expand_tls_value");

    group.build_and_add_to(&mut shared.transform_groups);

    let mut widen = TransformGroupBuilder::new(
        "x86_widen",
        r#"
    Legalize instructions by widening.

    Use x86-specific instructions if needed."#,
    )
    .isa("x86")
    .chain_with(shared.transform_groups.by_name("widen").id);

    widen.custom_legalize(ineg, "convert_ineg");
    widen.build_and_add_to(&mut shared.transform_groups);

    // To reduce compilation times, separate out large blocks of legalizations by
    // theme.
    define_simd(shared, x86_instructions);
}

fn define_simd(shared: &mut SharedDefinitions, x86_instructions: &InstructionGroup) {
    let insts = &shared.instructions;
    let band = insts.by_name("band");
    let band_not = insts.by_name("band_not");
    let bitcast = insts.by_name("bitcast");
    let bitselect = insts.by_name("bitselect");
    let bor = insts.by_name("bor");
    let bnot = insts.by_name("bnot");
    let bxor = insts.by_name("bxor");
    let extractlane = insts.by_name("extractlane");
    let fcmp = insts.by_name("fcmp");
    let fabs = insts.by_name("fabs");
    let fneg = insts.by_name("fneg");
    let iadd_imm = insts.by_name("iadd_imm");
    let icmp = insts.by_name("icmp");
    let imax = insts.by_name("imax");
    let imin = insts.by_name("imin");
    let ineg = insts.by_name("ineg");
    let insertlane = insts.by_name("insertlane");
    let ishl = insts.by_name("ishl");
    let ishl_imm = insts.by_name("ishl_imm");
    let raw_bitcast = insts.by_name("raw_bitcast");
    let scalar_to_vector = insts.by_name("scalar_to_vector");
    let splat = insts.by_name("splat");
    let shuffle = insts.by_name("shuffle");
    let sshr = insts.by_name("sshr");
    let swizzle = insts.by_name("swizzle");
    let trueif = insts.by_name("trueif");
    let uadd_sat = insts.by_name("uadd_sat");
    let umax = insts.by_name("umax");
    let umin = insts.by_name("umin");
    let ushr_imm = insts.by_name("ushr_imm");
    let ushr = insts.by_name("ushr");
    let vconst = insts.by_name("vconst");
    let vall_true = insts.by_name("vall_true");
    let vany_true = insts.by_name("vany_true");
    let vselect = insts.by_name("vselect");

    let x86_packss = x86_instructions.by_name("x86_packss");
    let x86_pmaxs = x86_instructions.by_name("x86_pmaxs");
    let x86_pmaxu = x86_instructions.by_name("x86_pmaxu");
    let x86_pmins = x86_instructions.by_name("x86_pmins");
    let x86_pminu = x86_instructions.by_name("x86_pminu");
    let x86_pshufb = x86_instructions.by_name("x86_pshufb");
    let x86_pshufd = x86_instructions.by_name("x86_pshufd");
    let x86_psra = x86_instructions.by_name("x86_psra");
    let x86_ptest = x86_instructions.by_name("x86_ptest");
    let x86_punpckh = x86_instructions.by_name("x86_punpckh");
    let x86_punpckl = x86_instructions.by_name("x86_punpckl");

    let imm = &shared.imm;

    let mut narrow = TransformGroupBuilder::new(
        "x86_narrow",
        r#"
    Legalize instructions by narrowing.

    Use x86-specific instructions if needed."#,
    )
    .isa("x86")
    .chain_with(shared.transform_groups.by_name("narrow_flags").id);

    // Set up variables and immediates.
    let uimm8_zero = Literal::constant(&imm.uimm8, 0x00);
    let uimm8_one = Literal::constant(&imm.uimm8, 0x01);
    let uimm8_eight = Literal::constant(&imm.uimm8, 8);
    let u128_zeroes = constant(vec![0x00; 16]);
    let u128_ones = constant(vec![0xff; 16]);
    let u128_seventies = constant(vec![0x70; 16]);
    let a = var("a");
    let b = var("b");
    let c = var("c");
    let d = var("d");
    let e = var("e");
    let f = var("f");
    let g = var("g");
    let h = var("h");
    let x = var("x");
    let y = var("y");
    let z = var("z");

    // Limit the SIMD vector size: eventually multiple vector sizes may be supported
    // but for now only SSE-sized vectors are available.
    let sse_vector_size: u64 = 128;
    let allowed_simd_type = |t: &LaneType| t.lane_bits() >= 8 && t.lane_bits() < 128;

    // SIMD splat: 8-bits
    for ty in ValueType::all_lane_types().filter(|t| t.lane_bits() == 8) {
        let splat_any8x16 = splat.bind(vector(ty, sse_vector_size));
        narrow.legalize(
            def!(y = splat_any8x16(x)),
            vec![
                // Move into the lowest 8 bits of an XMM register.
                def!(a = scalar_to_vector(x)),
                // Zero out a different XMM register; the shuffle mask for moving the lowest byte
                // to all other byte lanes is 0x0.
                def!(b = vconst(u128_zeroes)),
                // PSHUFB takes two XMM operands, one of which is a shuffle mask (i.e. b).
                def!(y = x86_pshufb(a, b)),
            ],
        );
    }

    // SIMD splat: 16-bits
    for ty in ValueType::all_lane_types().filter(|t| t.lane_bits() == 16) {
        let splat_x16x8 = splat.bind(vector(ty, sse_vector_size));
        let raw_bitcast_any16x8_to_i32x4 = raw_bitcast
            .bind(vector(I32, sse_vector_size))
            .bind(vector(ty, sse_vector_size));
        let raw_bitcast_i32x4_to_any16x8 = raw_bitcast
            .bind(vector(ty, sse_vector_size))
            .bind(vector(I32, sse_vector_size));
        narrow.legalize(
            def!(y = splat_x16x8(x)),
            vec![
                // Move into the lowest 16 bits of an XMM register.
                def!(a = scalar_to_vector(x)),
                // Insert the value again but in the next lowest 16 bits.
                def!(b = insertlane(a, x, uimm8_one)),
                // No instruction emitted; pretend this is an I32x4 so we can use PSHUFD.
                def!(c = raw_bitcast_any16x8_to_i32x4(b)),
                // Broadcast the bytes in the XMM register with PSHUFD.
                def!(d = x86_pshufd(c, uimm8_zero)),
                // No instruction emitted; pretend this is an X16x8 again.
                def!(y = raw_bitcast_i32x4_to_any16x8(d)),
            ],
        );
    }

    // SIMD splat: 32-bits
    for ty in ValueType::all_lane_types().filter(|t| t.lane_bits() == 32) {
        let splat_any32x4 = splat.bind(vector(ty, sse_vector_size));
        narrow.legalize(
            def!(y = splat_any32x4(x)),
            vec![
                // Translate to an x86 MOV to get the value in an XMM register.
                def!(a = scalar_to_vector(x)),
                // Broadcast the bytes in the XMM register with PSHUFD.
                def!(y = x86_pshufd(a, uimm8_zero)),
            ],
        );
    }

    // SIMD splat: 64-bits
    for ty in ValueType::all_lane_types().filter(|t| t.lane_bits() == 64) {
        let splat_any64x2 = splat.bind(vector(ty, sse_vector_size));
        narrow.legalize(
            def!(y = splat_any64x2(x)),
            vec![
                // Move into the lowest 64 bits of an XMM register.
                def!(a = scalar_to_vector(x)),
                // Move into the highest 64 bits of the same XMM register.
                def!(y = insertlane(a, x, uimm8_one)),
            ],
        );
    }

    // SIMD swizzle; the following inefficient implementation is due to the Wasm SIMD spec requiring
    // mask indexes greater than 15 to have the same semantics as a 0 index. For the spec discussion,
    // see https://github.com/WebAssembly/simd/issues/93.
    {
        let swizzle = swizzle.bind(vector(I8, sse_vector_size));
        narrow.legalize(
            def!(a = swizzle(x, y)),
            vec![
                def!(b = vconst(u128_seventies)),
                def!(c = uadd_sat(y, b)),
                def!(a = x86_pshufb(x, c)),
            ],
        );
    }

    // SIMD bnot
    for ty in ValueType::all_lane_types().filter(allowed_simd_type) {
        let bnot = bnot.bind(vector(ty, sse_vector_size));
        narrow.legalize(
            def!(y = bnot(x)),
            vec![def!(a = vconst(u128_ones)), def!(y = bxor(a, x))],
        );
    }

    // SIMD shift right (arithmetic, i16x8 and i32x4)
    for ty in &[I16, I32] {
        let sshr = sshr.bind(vector(*ty, sse_vector_size));
        let bitcast_i64x2 = bitcast.bind(vector(I64, sse_vector_size));
        narrow.legalize(
            def!(a = sshr(x, y)),
            vec![def!(b = bitcast_i64x2(y)), def!(a = x86_psra(x, b))],
        );
    }
    // SIMD shift right (arithmetic, i8x16)
    {
        let sshr = sshr.bind(vector(I8, sse_vector_size));
        let bitcast_i64x2 = bitcast.bind(vector(I64, sse_vector_size));
        let raw_bitcast_i16x8 = raw_bitcast.bind(vector(I16, sse_vector_size));
        let raw_bitcast_i16x8_again = raw_bitcast.bind(vector(I16, sse_vector_size));
        narrow.legalize(
            def!(z = sshr(x, y)),
            vec![
                // Since we will use the high byte of each 16x8 lane, shift an extra 8 bits.
                def!(a = iadd_imm(y, uimm8_eight)),
                def!(b = bitcast_i64x2(a)),
                // Take the low 8 bytes of x, duplicate them in 16x8 lanes, then shift right.
                def!(c = x86_punpckl(x, x)),
                def!(d = raw_bitcast_i16x8(c)),
                def!(e = x86_psra(d, b)),
                // Take the high 8 bytes of x, duplicate them in 16x8 lanes, then shift right.
                def!(f = x86_punpckh(x, x)),
                def!(g = raw_bitcast_i16x8_again(f)),
                def!(h = x86_psra(g, b)),
                // Re-pack the vector.
                def!(z = x86_packss(e, h)),
            ],
        );
    }
    // SIMD shift right (arithmetic, i64x2)
    {
        let sshr_vector = sshr.bind(vector(I64, sse_vector_size));
        let sshr_scalar_lane0 = sshr.bind(I64);
        let sshr_scalar_lane1 = sshr.bind(I64);
        narrow.legalize(
            def!(z = sshr_vector(x, y)),
            vec![
                // Use scalar operations to shift the first lane.
                def!(a = extractlane(x, uimm8_zero)),
                def!(b = sshr_scalar_lane0(a, y)),
                def!(c = insertlane(x, b, uimm8_zero)),
                // Do the same for the second lane.
                def!(d = extractlane(x, uimm8_one)),
                def!(e = sshr_scalar_lane1(d, y)),
                def!(z = insertlane(c, e, uimm8_one)),
            ],
        );
    }

    // SIMD select
    for ty in ValueType::all_lane_types().filter(allowed_simd_type) {
        let bitselect = bitselect.bind(vector(ty, sse_vector_size)); // must bind both x/y and c
        narrow.legalize(
            def!(d = bitselect(c, x, y)),
            vec![
                def!(a = band(x, c)),
                def!(b = band_not(y, c)),
                def!(d = bor(a, b)),
            ],
        );
    }

    // SIMD vselect; replace with bitselect if BLEND* instructions are not available.
    // This works, because each lane of boolean vector is filled with zeroes or ones.
    for ty in ValueType::all_lane_types().filter(allowed_simd_type) {
        let vselect = vselect.bind(vector(ty, sse_vector_size));
        let raw_bitcast = raw_bitcast.bind(vector(ty, sse_vector_size));
        narrow.legalize(
            def!(d = vselect(c, x, y)),
            vec![def!(a = raw_bitcast(c)), def!(d = bitselect(a, x, y))],
        );
    }

    // SIMD vany_true
    let ne = Literal::enumerator_for(&imm.intcc, "ne");
    for ty in ValueType::all_lane_types().filter(allowed_simd_type) {
        let vany_true = vany_true.bind(vector(ty, sse_vector_size));
        narrow.legalize(
            def!(y = vany_true(x)),
            vec![def!(a = x86_ptest(x, x)), def!(y = trueif(ne, a))],
        );
    }

    // SIMD vall_true
    let eq = Literal::enumerator_for(&imm.intcc, "eq");
    for ty in ValueType::all_lane_types().filter(allowed_simd_type) {
        let vall_true = vall_true.bind(vector(ty, sse_vector_size));
        if ty.is_int() {
            // In the common case (Wasm's integer-only all_true), we do not require a
            // bitcast.
            narrow.legalize(
                def!(y = vall_true(x)),
                vec![
                    def!(a = vconst(u128_zeroes)),
                    def!(c = icmp(eq, x, a)),
                    def!(d = x86_ptest(c, c)),
                    def!(y = trueif(eq, d)),
                ],
            );
        } else {
            // However, to support other types we must bitcast them to an integer vector to
            // use icmp.
            let lane_type_as_int = LaneType::int_from_bits(ty.lane_bits() as u16);
            let raw_bitcast_to_int = raw_bitcast.bind(vector(lane_type_as_int, sse_vector_size));
            narrow.legalize(
                def!(y = vall_true(x)),
                vec![
                    def!(a = vconst(u128_zeroes)),
                    def!(b = raw_bitcast_to_int(x)),
                    def!(c = icmp(eq, b, a)),
                    def!(d = x86_ptest(c, c)),
                    def!(y = trueif(eq, d)),
                ],
            );
        }
    }

    // SIMD icmp ne
    let ne = Literal::enumerator_for(&imm.intcc, "ne");
    for ty in ValueType::all_lane_types().filter(|ty| allowed_simd_type(ty) && ty.is_int()) {
        let icmp_ = icmp.bind(vector(ty, sse_vector_size));
        narrow.legalize(
            def!(c = icmp_(ne, a, b)),
            vec![def!(x = icmp(eq, a, b)), def!(c = bnot(x))],
        );
    }

    // SIMD icmp greater-/less-than
    let sgt = Literal::enumerator_for(&imm.intcc, "sgt");
    let ugt = Literal::enumerator_for(&imm.intcc, "ugt");
    let sge = Literal::enumerator_for(&imm.intcc, "sge");
    let uge = Literal::enumerator_for(&imm.intcc, "uge");
    let slt = Literal::enumerator_for(&imm.intcc, "slt");
    let ult = Literal::enumerator_for(&imm.intcc, "ult");
    let sle = Literal::enumerator_for(&imm.intcc, "sle");
    let ule = Literal::enumerator_for(&imm.intcc, "ule");
    for ty in &[I8, I16, I32] {
        // greater-than
        let icmp_ = icmp.bind(vector(*ty, sse_vector_size));
        narrow.legalize(
            def!(c = icmp_(ugt, a, b)),
            vec![
                def!(x = x86_pmaxu(a, b)),
                def!(y = icmp(eq, x, b)),
                def!(c = bnot(y)),
            ],
        );
        let icmp_ = icmp.bind(vector(*ty, sse_vector_size));
        narrow.legalize(
            def!(c = icmp_(sge, a, b)),
            vec![def!(x = x86_pmins(a, b)), def!(c = icmp(eq, x, b))],
        );
        let icmp_ = icmp.bind(vector(*ty, sse_vector_size));
        narrow.legalize(
            def!(c = icmp_(uge, a, b)),
            vec![def!(x = x86_pminu(a, b)), def!(c = icmp(eq, x, b))],
        );

        // less-than
        let icmp_ = icmp.bind(vector(*ty, sse_vector_size));
        narrow.legalize(def!(c = icmp_(slt, a, b)), vec![def!(c = icmp(sgt, b, a))]);
        let icmp_ = icmp.bind(vector(*ty, sse_vector_size));
        narrow.legalize(def!(c = icmp_(ult, a, b)), vec![def!(c = icmp(ugt, b, a))]);
        let icmp_ = icmp.bind(vector(*ty, sse_vector_size));
        narrow.legalize(def!(c = icmp_(sle, a, b)), vec![def!(c = icmp(sge, b, a))]);
        let icmp_ = icmp.bind(vector(*ty, sse_vector_size));
        narrow.legalize(def!(c = icmp_(ule, a, b)), vec![def!(c = icmp(uge, b, a))]);
    }

    // SIMD integer min/max
    for ty in &[I8, I16, I32] {
        let imin = imin.bind(vector(*ty, sse_vector_size));
        narrow.legalize(def!(c = imin(a, b)), vec![def!(c = x86_pmins(a, b))]);
        let umin = umin.bind(vector(*ty, sse_vector_size));
        narrow.legalize(def!(c = umin(a, b)), vec![def!(c = x86_pminu(a, b))]);
        let imax = imax.bind(vector(*ty, sse_vector_size));
        narrow.legalize(def!(c = imax(a, b)), vec![def!(c = x86_pmaxs(a, b))]);
        let umax = umax.bind(vector(*ty, sse_vector_size));
        narrow.legalize(def!(c = umax(a, b)), vec![def!(c = x86_pmaxu(a, b))]);
    }

    // SIMD fcmp greater-/less-than
    let gt = Literal::enumerator_for(&imm.floatcc, "gt");
    let lt = Literal::enumerator_for(&imm.floatcc, "lt");
    let ge = Literal::enumerator_for(&imm.floatcc, "ge");
    let le = Literal::enumerator_for(&imm.floatcc, "le");
    let ugt = Literal::enumerator_for(&imm.floatcc, "ugt");
    let ult = Literal::enumerator_for(&imm.floatcc, "ult");
    let uge = Literal::enumerator_for(&imm.floatcc, "uge");
    let ule = Literal::enumerator_for(&imm.floatcc, "ule");
    for ty in &[F32, F64] {
        let fcmp_ = fcmp.bind(vector(*ty, sse_vector_size));
        narrow.legalize(def!(c = fcmp_(gt, a, b)), vec![def!(c = fcmp(lt, b, a))]);
        let fcmp_ = fcmp.bind(vector(*ty, sse_vector_size));
        narrow.legalize(def!(c = fcmp_(ge, a, b)), vec![def!(c = fcmp(le, b, a))]);
        let fcmp_ = fcmp.bind(vector(*ty, sse_vector_size));
        narrow.legalize(def!(c = fcmp_(ult, a, b)), vec![def!(c = fcmp(ugt, b, a))]);
        let fcmp_ = fcmp.bind(vector(*ty, sse_vector_size));
        narrow.legalize(def!(c = fcmp_(ule, a, b)), vec![def!(c = fcmp(uge, b, a))]);
    }

    for ty in &[F32, F64] {
        let fneg = fneg.bind(vector(*ty, sse_vector_size));
        let lane_type_as_int = LaneType::int_from_bits(LaneType::from(*ty).lane_bits() as u16);
        let uimm8_shift = Literal::constant(&imm.uimm8, lane_type_as_int.lane_bits() as i64 - 1);
        let vconst = vconst.bind(vector(lane_type_as_int, sse_vector_size));
        let bitcast_to_float = raw_bitcast.bind(vector(*ty, sse_vector_size));
        narrow.legalize(
            def!(b = fneg(a)),
            vec![
                def!(c = vconst(u128_ones)),
                def!(d = ishl_imm(c, uimm8_shift)), // Create a mask of all 0s except the MSB.
                def!(e = bitcast_to_float(d)),      // Cast mask to the floating-point type.
                def!(b = bxor(a, e)),               // Flip the MSB.
            ],
        );
    }

    // SIMD fabs
    for ty in &[F32, F64] {
        let fabs = fabs.bind(vector(*ty, sse_vector_size));
        let lane_type_as_int = LaneType::int_from_bits(LaneType::from(*ty).lane_bits() as u16);
        let vconst = vconst.bind(vector(lane_type_as_int, sse_vector_size));
        let bitcast_to_float = raw_bitcast.bind(vector(*ty, sse_vector_size));
        narrow.legalize(
            def!(b = fabs(a)),
            vec![
                def!(c = vconst(u128_ones)),
                def!(d = ushr_imm(c, uimm8_one)), // Create a mask of all 1s except the MSB.
                def!(e = bitcast_to_float(d)),    // Cast mask to the floating-point type.
                def!(b = band(a, e)),             // Unset the MSB.
            ],
        );
    }

    narrow.custom_legalize(shuffle, "convert_shuffle");
    narrow.custom_legalize(extractlane, "convert_extractlane");
    narrow.custom_legalize(insertlane, "convert_insertlane");
    narrow.custom_legalize(ineg, "convert_ineg");
    narrow.custom_legalize(ushr, "convert_ushr");
    narrow.custom_legalize(ishl, "convert_ishl");

    narrow.build_and_add_to(&mut shared.transform_groups);
}