cranelift_codegen_meta/cdsl/
instructions.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
use std::fmt;
use std::rc::Rc;

use crate::cdsl::camel_case;
use crate::cdsl::formats::InstructionFormat;
use crate::cdsl::operands::Operand;
use crate::cdsl::typevar::TypeVar;

pub(crate) type AllInstructions = Vec<Instruction>;

pub(crate) struct InstructionGroupBuilder<'all_inst> {
    all_instructions: &'all_inst mut AllInstructions,
}

impl<'all_inst> InstructionGroupBuilder<'all_inst> {
    pub fn new(all_instructions: &'all_inst mut AllInstructions) -> Self {
        Self { all_instructions }
    }

    pub fn push(&mut self, builder: InstructionBuilder) {
        let inst = builder.build();
        self.all_instructions.push(inst);
    }
}

#[derive(Debug)]
pub(crate) struct PolymorphicInfo {
    pub use_typevar_operand: bool,
    pub ctrl_typevar: TypeVar,
}

#[derive(Debug)]
pub(crate) struct InstructionContent {
    /// Instruction mnemonic, also becomes opcode name.
    pub name: String,
    pub camel_name: String,

    /// Documentation string.
    pub doc: String,

    /// Input operands. This can be a mix of SSA value operands and other operand kinds.
    pub operands_in: Vec<Operand>,
    /// Output operands. The output operands must be SSA values or `variable_args`.
    pub operands_out: Vec<Operand>,

    /// Instruction format.
    pub format: Rc<InstructionFormat>,

    /// One of the input or output operands is a free type variable. None if the instruction is not
    /// polymorphic, set otherwise.
    pub polymorphic_info: Option<PolymorphicInfo>,

    /// Indices in operands_in of input operands that are values.
    pub value_opnums: Vec<usize>,
    /// Indices in operands_in of input operands that are immediates or entities.
    pub imm_opnums: Vec<usize>,
    /// Indices in operands_out of output operands that are values.
    pub value_results: Vec<usize>,

    /// True for instructions that terminate the block.
    pub is_terminator: bool,
    /// True for all branch or jump instructions.
    pub is_branch: bool,
    /// Is this a call instruction?
    pub is_call: bool,
    /// Is this a return instruction?
    pub is_return: bool,
    /// Can this instruction read from memory?
    pub can_load: bool,
    /// Can this instruction write to memory?
    pub can_store: bool,
    /// Can this instruction cause a trap?
    pub can_trap: bool,
    /// Does this instruction have other side effects besides can_* flags?
    pub other_side_effects: bool,
    /// Despite having other side effects, is this instruction okay to GVN?
    pub side_effects_idempotent: bool,
}

impl InstructionContent {
    pub fn snake_name(&self) -> &str {
        if &self.name == "return" {
            "return_"
        } else {
            &self.name
        }
    }
}

pub(crate) type Instruction = Rc<InstructionContent>;

impl fmt::Display for InstructionContent {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        if !self.operands_out.is_empty() {
            let operands_out = self
                .operands_out
                .iter()
                .map(|op| op.name)
                .collect::<Vec<_>>()
                .join(", ");
            fmt.write_str(&operands_out)?;
            fmt.write_str(" = ")?;
        }

        fmt.write_str(&self.name)?;

        if !self.operands_in.is_empty() {
            let operands_in = self
                .operands_in
                .iter()
                .map(|op| op.name)
                .collect::<Vec<_>>()
                .join(", ");
            fmt.write_str(" ")?;
            fmt.write_str(&operands_in)?;
        }

        Ok(())
    }
}

pub(crate) struct InstructionBuilder {
    name: String,
    doc: String,
    format: Rc<InstructionFormat>,
    operands_in: Option<Vec<Operand>>,
    operands_out: Option<Vec<Operand>>,

    // See Instruction comments for the meaning of these fields.
    is_terminator: bool,
    is_branch: bool,
    is_call: bool,
    is_return: bool,
    can_load: bool,
    can_store: bool,
    can_trap: bool,
    other_side_effects: bool,
    side_effects_idempotent: bool,
}

impl InstructionBuilder {
    pub fn new<S: Into<String>>(name: S, doc: S, format: &Rc<InstructionFormat>) -> Self {
        Self {
            name: name.into(),
            doc: doc.into(),
            format: format.clone(),
            operands_in: None,
            operands_out: None,

            is_terminator: false,
            is_branch: false,
            is_call: false,
            is_return: false,
            can_load: false,
            can_store: false,
            can_trap: false,
            other_side_effects: false,
            side_effects_idempotent: false,
        }
    }

    pub fn operands_in(mut self, operands: Vec<Operand>) -> Self {
        assert!(self.operands_in.is_none());
        self.operands_in = Some(operands);
        self
    }

    pub fn operands_out(mut self, operands: Vec<Operand>) -> Self {
        assert!(self.operands_out.is_none());
        self.operands_out = Some(operands);
        self
    }

    /// Mark this instruction as a block terminator.
    pub fn terminates_block(mut self) -> Self {
        self.is_terminator = true;
        self
    }

    /// Mark this instruction as a branch instruction. This also implies that the instruction is a
    /// block terminator.
    pub fn branches(mut self) -> Self {
        self.is_branch = true;
        self.terminates_block()
    }

    /// Mark this instruction as a call instruction.
    pub fn call(mut self) -> Self {
        self.is_call = true;
        self
    }

    /// Mark this instruction as a return instruction. This also implies that the instruction is a
    /// block terminator.
    pub fn returns(mut self) -> Self {
        self.is_return = true;
        self.terminates_block()
    }

    /// Mark this instruction as one that can load from memory.
    pub fn can_load(mut self) -> Self {
        self.can_load = true;
        self
    }

    /// Mark this instruction as one that can store to memory.
    pub fn can_store(mut self) -> Self {
        self.can_store = true;
        self
    }

    /// Mark this instruction as possibly trapping.
    pub fn can_trap(mut self) -> Self {
        self.can_trap = true;
        self
    }

    /// Mark this instruction as one that has side-effects.
    pub fn other_side_effects(mut self) -> Self {
        self.other_side_effects = true;
        self
    }

    /// Mark this instruction as one whose side-effects may be de-duplicated.
    pub fn side_effects_idempotent(mut self) -> Self {
        self.side_effects_idempotent = true;
        self
    }

    fn build(self) -> Instruction {
        let operands_in = self.operands_in.unwrap_or_default();
        let operands_out = self.operands_out.unwrap_or_default();

        let mut value_opnums = Vec::new();
        let mut imm_opnums = Vec::new();
        for (i, op) in operands_in.iter().enumerate() {
            if op.is_value() {
                value_opnums.push(i);
            } else if op.is_immediate_or_entityref() {
                imm_opnums.push(i);
            } else {
                assert!(op.is_varargs());
            }
        }

        let value_results = operands_out
            .iter()
            .enumerate()
            .filter_map(|(i, op)| if op.is_value() { Some(i) } else { None })
            .collect();

        verify_format(&self.name, &operands_in, &self.format);

        let polymorphic_info =
            verify_polymorphic(&operands_in, &operands_out, &self.format, &value_opnums);

        let camel_name = camel_case(&self.name);

        Rc::new(InstructionContent {
            name: self.name,
            camel_name,
            doc: self.doc,
            operands_in,
            operands_out,
            format: self.format,
            polymorphic_info,
            value_opnums,
            value_results,
            imm_opnums,
            is_terminator: self.is_terminator,
            is_branch: self.is_branch,
            is_call: self.is_call,
            is_return: self.is_return,
            can_load: self.can_load,
            can_store: self.can_store,
            can_trap: self.can_trap,
            other_side_effects: self.other_side_effects,
            side_effects_idempotent: self.side_effects_idempotent,
        })
    }
}

/// Checks that the input operands actually match the given format.
fn verify_format(inst_name: &str, operands_in: &[Operand], format: &InstructionFormat) {
    // A format is defined by:
    // - its number of input value operands,
    // - its number and names of input immediate operands,
    // - whether it has a value list or not.
    let mut num_values = 0;
    let mut num_blocks = 0;
    let mut num_immediates = 0;

    for operand in operands_in.iter() {
        if operand.is_varargs() {
            assert!(
                format.has_value_list,
                "instruction {} has varargs, but its format {} doesn't have a value list; you may \
                 need to use a different format.",
                inst_name, format.name
            );
        }
        if operand.is_value() {
            num_values += 1;
        }
        if operand.kind.is_block() {
            num_blocks += 1;
        } else if operand.is_immediate_or_entityref() {
            if let Some(format_field) = format.imm_fields.get(num_immediates) {
                assert_eq!(
                    format_field.kind.rust_field_name,
                    operand.kind.rust_field_name,
                    "{}th operand of {} should be {} (according to format), not {} (according to \
                     inst definition). You may need to use a different format.",
                    num_immediates,
                    inst_name,
                    format_field.kind.rust_field_name,
                    operand.kind.rust_field_name
                );
                num_immediates += 1;
            }
        }
    }

    assert_eq!(
        num_values, format.num_value_operands,
        "inst {} doesn't have as many value input operands as its format {} declares; you may need \
         to use a different format.",
        inst_name, format.name
    );

    assert_eq!(
        num_blocks, format.num_block_operands,
        "inst {} doesn't have as many block input operands as its format {} declares; you may need \
        to use a different format.",
        inst_name, format.name,
    );

    assert_eq!(
        num_immediates,
        format.imm_fields.len(),
        "inst {} doesn't have as many immediate input \
         operands as its format {} declares; you may need to use a different format.",
        inst_name,
        format.name
    );
}

/// Check if this instruction is polymorphic, and verify its use of type variables.
fn verify_polymorphic(
    operands_in: &[Operand],
    operands_out: &[Operand],
    format: &InstructionFormat,
    value_opnums: &[usize],
) -> Option<PolymorphicInfo> {
    // The instruction is polymorphic if it has one free input or output operand.
    let is_polymorphic = operands_in
        .iter()
        .any(|op| op.is_value() && op.type_var().unwrap().free_typevar().is_some())
        || operands_out
            .iter()
            .any(|op| op.is_value() && op.type_var().unwrap().free_typevar().is_some());

    if !is_polymorphic {
        return None;
    }

    // Verify the use of type variables.
    let tv_op = format.typevar_operand;
    let mut maybe_error_message = None;
    if let Some(tv_op) = tv_op {
        if tv_op < value_opnums.len() {
            let op_num = value_opnums[tv_op];
            let tv = operands_in[op_num].type_var().unwrap();
            let free_typevar = tv.free_typevar();
            if (free_typevar.is_some() && tv == &free_typevar.unwrap())
                || tv.singleton_type().is_some()
            {
                match is_ctrl_typevar_candidate(tv, operands_in, operands_out) {
                    Ok(_other_typevars) => {
                        return Some(PolymorphicInfo {
                            use_typevar_operand: true,
                            ctrl_typevar: tv.clone(),
                        });
                    }
                    Err(error_message) => {
                        maybe_error_message = Some(error_message);
                    }
                }
            }
        }
    };

    // If we reached here, it means the type variable indicated as the typevar operand couldn't
    // control every other input and output type variable. We need to look at the result type
    // variables.
    if operands_out.is_empty() {
        // No result means no other possible type variable, so it's a type inference failure.
        match maybe_error_message {
            Some(msg) => panic!("{}", msg),
            None => panic!("typevar_operand must be a free type variable"),
        }
    }

    // Otherwise, try to infer the controlling type variable by looking at the first result.
    let tv = operands_out[0].type_var().unwrap();
    let free_typevar = tv.free_typevar();
    if free_typevar.is_some() && tv != &free_typevar.unwrap() {
        panic!("first result must be a free type variable");
    }

    // At this point, if the next unwrap() fails, it means the output type couldn't be used as a
    // controlling type variable either; panicking is the right behavior.
    is_ctrl_typevar_candidate(tv, operands_in, operands_out).unwrap();

    Some(PolymorphicInfo {
        use_typevar_operand: false,
        ctrl_typevar: tv.clone(),
    })
}

/// Verify that the use of TypeVars is consistent with `ctrl_typevar` as the controlling type
/// variable.
///
/// All polymorhic inputs must either be derived from `ctrl_typevar` or be independent free type
/// variables only used once.
///
/// All polymorphic results must be derived from `ctrl_typevar`.
///
/// Return a vector of other type variables used, or a string explaining what went wrong.
fn is_ctrl_typevar_candidate(
    ctrl_typevar: &TypeVar,
    operands_in: &[Operand],
    operands_out: &[Operand],
) -> Result<Vec<TypeVar>, String> {
    let mut other_typevars = Vec::new();

    // Check value inputs.
    for input in operands_in {
        if !input.is_value() {
            continue;
        }

        let typ = input.type_var().unwrap();
        let free_typevar = typ.free_typevar();

        // Non-polymorphic or derived from ctrl_typevar is OK.
        if free_typevar.is_none() {
            continue;
        }
        let free_typevar = free_typevar.unwrap();
        if &free_typevar == ctrl_typevar {
            continue;
        }

        // No other derived typevars allowed.
        if typ != &free_typevar {
            return Err(format!(
                "{:?}: type variable {} must be derived from {:?} while it is derived from {:?}",
                input, typ.name, ctrl_typevar, free_typevar
            ));
        }

        // Other free type variables can only be used once each.
        for other_tv in &other_typevars {
            if &free_typevar == other_tv {
                return Err(format!(
                    "non-controlling type variable {} can't be used more than once",
                    free_typevar.name
                ));
            }
        }

        other_typevars.push(free_typevar);
    }

    // Check outputs.
    for result in operands_out {
        if !result.is_value() {
            continue;
        }

        let typ = result.type_var().unwrap();
        let free_typevar = typ.free_typevar();

        // Non-polymorphic or derived from ctrl_typevar is OK.
        if free_typevar.is_none() || &free_typevar.unwrap() == ctrl_typevar {
            continue;
        }

        return Err("type variable in output not derived from ctrl_typevar".into());
    }

    Ok(other_typevars)
}