cranelift_codegen_meta/
gen_isle.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
use std::rc::Rc;

use crate::cdsl::formats::InstructionFormat;
use crate::cdsl::instructions::AllInstructions;
use crate::error;
use crate::srcgen::Formatter;

/// Which ISLE target are we generating code for?
#[derive(Clone, Copy, PartialEq, Eq)]
enum IsleTarget {
    /// Generating code for instruction selection and lowering.
    Lower,
    /// Generating code for CLIF to CLIF optimizations.
    Opt,
}

fn gen_common_isle(
    formats: &[Rc<InstructionFormat>],
    instructions: &AllInstructions,
    fmt: &mut Formatter,
    isle_target: IsleTarget,
) {
    use std::collections::{BTreeMap, BTreeSet};
    use std::fmt::Write;

    use crate::cdsl::formats::FormatField;

    fmt.multi_line(
        r#"
;; GENERATED BY `gen_isle`. DO NOT EDIT!!!
;;
;; This ISLE file defines all the external type declarations for Cranelift's
;; data structures that ISLE will process, such as `InstructionData` and
;; `Opcode`.
        "#,
    );
    fmt.empty_line();

    // Collect and deduplicate the immediate types from the instruction fields.
    let rust_name = |f: &FormatField| f.kind.rust_type.rsplit("::").next().unwrap();
    let fields = |f: &FormatField| f.kind.fields.clone();
    let immediate_types: BTreeMap<_, _> = formats
        .iter()
        .flat_map(|f| {
            f.imm_fields
                .iter()
                .map(|i| (rust_name(i), fields(i)))
                .collect::<Vec<_>>()
        })
        .collect();

    // Separate the `enum` immediates (e.g., `FloatCC`) from other kinds of
    // immediates.
    let (enums, others): (BTreeMap<_, _>, BTreeMap<_, _>) = immediate_types
        .iter()
        .partition(|(_, field)| field.enum_values().is_some());

    // Generate all the extern type declarations we need for the non-`enum`
    // immediates.
    fmt.line(";;;; Extern type declarations for immediates ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;");
    fmt.empty_line();
    for ty in others.keys() {
        fmtln!(fmt, "(type {} (primitive {}))", ty, ty);
    }
    fmt.empty_line();

    // Generate the `enum` immediates, expanding all of the available variants
    // into ISLE.
    for (name, field) in enums {
        let field = field.enum_values().expect("only enums considered here");
        let variants = field.values().cloned().collect();
        gen_isle_enum(name, variants, fmt)
    }

    // Generate all of the value arrays we need for `InstructionData` as well as
    // the constructors and extractors for them.
    fmt.line(";;;; Value Arrays ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;");
    fmt.empty_line();
    let value_array_arities: BTreeSet<_> = formats
        .iter()
        .filter(|f| f.typevar_operand.is_some() && !f.has_value_list && f.num_value_operands != 1)
        .map(|f| f.num_value_operands)
        .collect();
    for n in value_array_arities {
        fmtln!(fmt, ";; ISLE representation of `[Value; {}]`.", n);
        fmtln!(fmt, "(type ValueArray{} extern (enum))", n);
        fmt.empty_line();

        fmtln!(
            fmt,
            "(decl value_array_{} ({}) ValueArray{})",
            n,
            (0..n).map(|_| "Value").collect::<Vec<_>>().join(" "),
            n
        );
        fmtln!(
            fmt,
            "(extern constructor value_array_{} pack_value_array_{})",
            n,
            n
        );
        fmtln!(
            fmt,
            "(extern extractor infallible value_array_{} unpack_value_array_{})",
            n,
            n
        );
        fmt.empty_line();
    }

    // Generate all of the block arrays we need for `InstructionData` as well as
    // the constructors and extractors for them.
    fmt.line(";;;; Block Arrays ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;");
    fmt.empty_line();
    let block_array_arities: BTreeSet<_> = formats
        .iter()
        .filter(|f| f.num_block_operands > 1)
        .map(|f| f.num_block_operands)
        .collect();
    for n in block_array_arities {
        fmtln!(fmt, ";; ISLE representation of `[BlockCall; {}]`.", n);
        fmtln!(fmt, "(type BlockArray{} extern (enum))", n);
        fmt.empty_line();

        fmtln!(
            fmt,
            "(decl block_array_{0} ({1}) BlockArray{0})",
            n,
            (0..n).map(|_| "BlockCall").collect::<Vec<_>>().join(" ")
        );

        fmtln!(
            fmt,
            "(extern constructor block_array_{0} pack_block_array_{0})",
            n
        );

        fmtln!(
            fmt,
            "(extern extractor infallible block_array_{0} unpack_block_array_{0})",
            n
        );
        fmt.empty_line();
    }

    // Generate the extern type declaration for `Opcode`.
    fmt.line(";;;; `Opcode` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;");
    fmt.empty_line();
    fmt.line("(type Opcode extern");
    fmt.indent(|fmt| {
        fmt.line("(enum");
        fmt.indent(|fmt| {
            for inst in instructions {
                fmtln!(fmt, "{}", inst.camel_name);
            }
        });
        fmt.line(")");
    });
    fmt.line(")");
    fmt.empty_line();

    // Generate the extern type declaration for `InstructionData`.
    fmtln!(
        fmt,
        ";;;; `InstructionData` ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;",
    );
    fmt.empty_line();
    fmtln!(fmt, "(type InstructionData extern");
    fmt.indent(|fmt| {
        fmt.line("(enum");
        fmt.indent(|fmt| {
            for format in formats {
                let mut s = format!("({} (opcode Opcode)", format.name);
                if format.has_value_list {
                    s.push_str(" (args ValueList)");
                } else if format.num_value_operands == 1 {
                    s.push_str(" (arg Value)");
                } else if format.num_value_operands > 1 {
                    write!(&mut s, " (args ValueArray{})", format.num_value_operands).unwrap();
                }

                match format.num_block_operands {
                    0 => (),
                    1 => write!(&mut s, " (destination BlockCall)").unwrap(),
                    n => write!(&mut s, " (blocks BlockArray{n})").unwrap(),
                }

                for field in &format.imm_fields {
                    write!(
                        &mut s,
                        " ({} {})",
                        field.member,
                        field.kind.rust_type.rsplit("::").next().unwrap()
                    )
                    .unwrap();
                }
                s.push(')');
                fmt.line(&s);
            }
        });
        fmt.line(")");
    });
    fmt.line(")");
    fmt.empty_line();

    // Generate the helper extractors for each opcode's full instruction.
    fmtln!(
        fmt,
        ";;;; Extracting Opcode, Operands, and Immediates from `InstructionData` ;;;;;;;;",
    );
    fmt.empty_line();
    let ret_ty = match isle_target {
        IsleTarget::Lower => "Inst",
        IsleTarget::Opt => "Value",
    };
    for inst in instructions {
        if isle_target == IsleTarget::Opt
            && (inst.format.has_value_list || inst.value_results.len() != 1)
        {
            continue;
        }

        fmtln!(
            fmt,
            "(decl {} ({}{}) {})",
            inst.name,
            match isle_target {
                IsleTarget::Lower => "",
                IsleTarget::Opt => "Type ",
            },
            inst.operands_in
                .iter()
                .map(|o| {
                    let ty = o.kind.rust_type;
                    if ty == "&[Value]" {
                        "ValueSlice"
                    } else {
                        ty.rsplit("::").next().unwrap()
                    }
                })
                .collect::<Vec<_>>()
                .join(" "),
            ret_ty
        );
        fmtln!(fmt, "(extractor");
        fmt.indent(|fmt| {
            fmtln!(
                fmt,
                "({} {}{})",
                inst.name,
                match isle_target {
                    IsleTarget::Lower => "",
                    IsleTarget::Opt => "ty ",
                },
                inst.operands_in
                    .iter()
                    .map(|o| { o.name })
                    .collect::<Vec<_>>()
                    .join(" ")
            );

            let mut s = format!(
                "(inst_data{} (InstructionData.{} (Opcode.{})",
                match isle_target {
                    IsleTarget::Lower => "",
                    IsleTarget::Opt => " ty",
                },
                inst.format.name,
                inst.camel_name
            );

            // Value and varargs operands.
            if inst.format.has_value_list {
                // The instruction format uses a value list, but the
                // instruction itself might have not only a `&[Value]`
                // varargs operand, but also one or more `Value` operands as
                // well. If this is the case, then we need to read them off
                // the front of the `ValueList`.
                let values: Vec<_> = inst
                    .operands_in
                    .iter()
                    .filter(|o| o.is_value())
                    .map(|o| o.name)
                    .collect();
                let varargs = inst
                    .operands_in
                    .iter()
                    .find(|o| o.is_varargs())
                    .unwrap()
                    .name;
                if values.is_empty() {
                    write!(&mut s, " (value_list_slice {varargs})").unwrap();
                } else {
                    write!(
                        &mut s,
                        " (unwrap_head_value_list_{} {} {})",
                        values.len(),
                        values.join(" "),
                        varargs
                    )
                    .unwrap();
                }
            } else if inst.format.num_value_operands == 1 {
                write!(
                    &mut s,
                    " {}",
                    inst.operands_in.iter().find(|o| o.is_value()).unwrap().name
                )
                .unwrap();
            } else if inst.format.num_value_operands > 1 {
                let values = inst
                    .operands_in
                    .iter()
                    .filter(|o| o.is_value())
                    .map(|o| o.name)
                    .collect::<Vec<_>>();
                assert_eq!(values.len(), inst.format.num_value_operands);
                let values = values.join(" ");
                write!(
                    &mut s,
                    " (value_array_{} {})",
                    inst.format.num_value_operands, values,
                )
                .unwrap();
            }

            // Immediates.
            let imm_operands: Vec<_> = inst
                .operands_in
                .iter()
                .filter(|o| !o.is_value() && !o.is_varargs() && !o.kind.is_block())
                .collect();
            assert_eq!(imm_operands.len(), inst.format.imm_fields.len(),);
            for op in imm_operands {
                write!(&mut s, " {}", op.name).unwrap();
            }

            // Blocks.
            let block_operands: Vec<_> = inst
                .operands_in
                .iter()
                .filter(|o| o.kind.is_block())
                .collect();
            assert_eq!(block_operands.len(), inst.format.num_block_operands);
            assert!(block_operands.len() <= 2);

            if !block_operands.is_empty() {
                if block_operands.len() == 1 {
                    write!(&mut s, " {}", block_operands[0].name).unwrap();
                } else {
                    let blocks: Vec<_> = block_operands.iter().map(|o| o.name).collect();
                    let blocks = blocks.join(" ");
                    write!(
                        &mut s,
                        " (block_array_{} {})",
                        inst.format.num_block_operands, blocks,
                    )
                    .unwrap();
                }
            }

            s.push_str("))");
            fmt.line(&s);
        });
        fmt.line(")");

        // Generate a constructor if this is the mid-end prelude.
        if isle_target == IsleTarget::Opt {
            fmtln!(
                fmt,
                "(rule ({} ty {})",
                inst.name,
                inst.operands_in
                    .iter()
                    .map(|o| o.name)
                    .collect::<Vec<_>>()
                    .join(" ")
            );
            fmt.indent(|fmt| {
                let mut s = format!(
                    "(make_inst ty (InstructionData.{} (Opcode.{})",
                    inst.format.name, inst.camel_name
                );

                // Handle values. Note that we skip generating
                // constructors for any instructions with variadic
                // value lists. This is fine for the mid-end because
                // in practice only calls and branches (for branch
                // args) use this functionality, and neither can
                // really be optimized or rewritten in the mid-end
                // (currently).
                //
                // As a consequence, we only have to handle the
                // one-`Value` case, in which the `Value` is directly
                // in the `InstructionData`, and the multiple-`Value`
                // case, in which the `Value`s are in a
                // statically-sized array (e.g. `[Value; 2]` for a
                // binary op).
                assert!(!inst.format.has_value_list);
                if inst.format.num_value_operands == 1 {
                    write!(
                        &mut s,
                        " {}",
                        inst.operands_in.iter().find(|o| o.is_value()).unwrap().name
                    )
                    .unwrap();
                } else if inst.format.num_value_operands > 1 {
                    // As above, get all bindings together, and pass
                    // to a sub-term; here we use a constructor to
                    // build the value array.
                    let values = inst
                        .operands_in
                        .iter()
                        .filter(|o| o.is_value())
                        .map(|o| o.name)
                        .collect::<Vec<_>>();
                    assert_eq!(values.len(), inst.format.num_value_operands);
                    let values = values.join(" ");
                    write!(
                        &mut s,
                        " (value_array_{}_ctor {})",
                        inst.format.num_value_operands, values
                    )
                    .unwrap();
                }

                if inst.format.num_block_operands > 0 {
                    let blocks: Vec<_> = inst
                        .operands_in
                        .iter()
                        .filter(|o| o.kind.is_block())
                        .map(|o| o.name)
                        .collect();
                    if inst.format.num_block_operands == 1 {
                        write!(&mut s, " {}", blocks.first().unwrap(),).unwrap();
                    } else {
                        write!(
                            &mut s,
                            " (block_array_{} {})",
                            inst.format.num_block_operands,
                            blocks.join(" ")
                        )
                        .unwrap();
                    }
                }

                // Immediates (non-value args).
                for o in inst
                    .operands_in
                    .iter()
                    .filter(|o| !o.is_value() && !o.is_varargs() && !o.kind.is_block())
                {
                    write!(&mut s, " {}", o.name).unwrap();
                }
                s.push_str("))");
                fmt.line(&s);
            });
            fmt.line(")");
        }

        fmt.empty_line();
    }
}

fn gen_opt_isle(
    formats: &[Rc<InstructionFormat>],
    instructions: &AllInstructions,
    fmt: &mut Formatter,
) {
    gen_common_isle(formats, instructions, fmt, IsleTarget::Opt);
}

fn gen_lower_isle(
    formats: &[Rc<InstructionFormat>],
    instructions: &AllInstructions,
    fmt: &mut Formatter,
) {
    gen_common_isle(formats, instructions, fmt, IsleTarget::Lower);
}

/// Generate an `enum` immediate in ISLE.
fn gen_isle_enum(name: &str, mut variants: Vec<&str>, fmt: &mut Formatter) {
    variants.sort();
    let prefix = format!(";;;; Enumerated Immediate: {name} ");
    fmtln!(fmt, "{:;<80}", prefix);
    fmt.empty_line();
    fmtln!(fmt, "(type {} extern", name);
    fmt.indent(|fmt| {
        fmt.line("(enum");
        fmt.indent(|fmt| {
            for variant in variants {
                fmtln!(fmt, "{}", variant);
            }
        });
        fmt.line(")");
    });
    fmt.line(")");
    fmt.empty_line();
}

pub(crate) fn generate(
    formats: &[Rc<InstructionFormat>],
    all_inst: &AllInstructions,
    isle_opt_filename: &str,
    isle_lower_filename: &str,
    isle_dir: &std::path::Path,
) -> Result<(), error::Error> {
    // ISLE DSL: mid-end ("opt") generated bindings.
    let mut fmt = Formatter::new();
    gen_opt_isle(&formats, all_inst, &mut fmt);
    fmt.update_file(isle_opt_filename, isle_dir)?;

    // ISLE DSL: lowering generated bindings.
    let mut fmt = Formatter::new();
    gen_lower_isle(&formats, all_inst, &mut fmt);
    fmt.update_file(isle_lower_filename, isle_dir)?;

    Ok(())
}