cranelift_codegen_meta/cdsl/
typevar.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
use std::cell::RefCell;
use std::collections::BTreeSet;
use std::fmt;
use std::hash;
use std::ops;
use std::rc::Rc;

use crate::cdsl::types::{LaneType, ValueType};

const MAX_LANES: u16 = 256;
const MAX_BITS: u16 = 128;
const MAX_FLOAT_BITS: u16 = 128;

/// Type variables can be used in place of concrete types when defining
/// instructions. This makes the instructions *polymorphic*.
///
/// A type variable is restricted to vary over a subset of the value types.
/// This subset is specified by a set of flags that control the permitted base
/// types and whether the type variable can assume scalar or vector types, or
/// both.
#[derive(Debug)]
pub(crate) struct TypeVarContent {
    /// Short name of type variable used in instruction descriptions.
    pub name: String,

    /// Documentation string.
    pub doc: String,

    /// Type set associated to the type variable.
    /// This field must remain private; use `get_typeset()` or `get_raw_typeset()` to get the
    /// information you want.
    type_set: TypeSet,

    pub base: Option<TypeVarParent>,
}

#[derive(Clone, Debug)]
pub(crate) struct TypeVar {
    content: Rc<RefCell<TypeVarContent>>,
}

impl TypeVar {
    pub fn new(name: impl Into<String>, doc: impl Into<String>, type_set: TypeSet) -> Self {
        Self {
            content: Rc::new(RefCell::new(TypeVarContent {
                name: name.into(),
                doc: doc.into(),
                type_set,
                base: None,
            })),
        }
    }

    pub fn new_singleton(value_type: ValueType) -> Self {
        let (name, doc) = (value_type.to_string(), value_type.doc());
        let mut builder = TypeSetBuilder::new();

        let (scalar_type, num_lanes) = match value_type {
            ValueType::Lane(lane_type) => (lane_type, 1),
            ValueType::Vector(vec_type) => {
                (vec_type.lane_type(), vec_type.lane_count() as RangeBound)
            }
            ValueType::DynamicVector(vec_type) => (
                vec_type.lane_type(),
                vec_type.minimum_lane_count() as RangeBound,
            ),
        };

        builder = builder.simd_lanes(num_lanes..num_lanes);

        // Only generate dynamic types for multiple lanes.
        if num_lanes > 1 {
            builder = builder.dynamic_simd_lanes(num_lanes..num_lanes);
        }

        let builder = match scalar_type {
            LaneType::Int(int_type) => {
                let bits = int_type as RangeBound;
                builder.ints(bits..bits)
            }
            LaneType::Float(float_type) => {
                let bits = float_type as RangeBound;
                builder.floats(bits..bits)
            }
        };
        TypeVar::new(name, doc, builder.build())
    }

    /// Get a fresh copy of self, named after `name`. Can only be called on non-derived typevars.
    pub fn copy_from(other: &TypeVar, name: String) -> TypeVar {
        assert!(
            other.base.is_none(),
            "copy_from() can only be called on non-derived type variables"
        );
        TypeVar {
            content: Rc::new(RefCell::new(TypeVarContent {
                name,
                doc: "".into(),
                type_set: other.type_set.clone(),
                base: None,
            })),
        }
    }

    /// Returns the typeset for this TV. If the TV is derived, computes it recursively from the
    /// derived function and the base's typeset.
    /// Note this can't be done non-lazily in the constructor, because the TypeSet of the base may
    /// change over time.
    pub fn get_typeset(&self) -> TypeSet {
        match &self.base {
            Some(base) => base.type_var.get_typeset().image(base.derived_func),
            None => self.type_set.clone(),
        }
    }

    /// Returns this typevar's type set, assuming this type var has no parent.
    pub fn get_raw_typeset(&self) -> &TypeSet {
        assert_eq!(self.type_set, self.get_typeset());
        &self.type_set
    }

    /// If the associated typeset has a single type return it. Otherwise return None.
    pub fn singleton_type(&self) -> Option<ValueType> {
        let type_set = self.get_typeset();
        if type_set.size() == 1 {
            Some(type_set.get_singleton())
        } else {
            None
        }
    }

    /// Get the free type variable controlling this one.
    pub fn free_typevar(&self) -> Option<TypeVar> {
        match &self.base {
            Some(base) => base.type_var.free_typevar(),
            None => {
                match self.singleton_type() {
                    // A singleton type isn't a proper free variable.
                    Some(_) => None,
                    None => Some(self.clone()),
                }
            }
        }
    }

    /// Create a type variable that is a function of another.
    pub fn derived(&self, derived_func: DerivedFunc) -> TypeVar {
        let ts = self.get_typeset();

        // Safety checks to avoid over/underflows.
        match derived_func {
            DerivedFunc::HalfWidth => {
                assert!(
                    ts.ints.is_empty() || *ts.ints.iter().min().unwrap() > 8,
                    "can't halve all integer types"
                );
                assert!(
                    ts.floats.is_empty() || *ts.floats.iter().min().unwrap() > 16,
                    "can't halve all float types"
                );
            }
            DerivedFunc::DoubleWidth => {
                assert!(
                    ts.ints.is_empty() || *ts.ints.iter().max().unwrap() < MAX_BITS,
                    "can't double all integer types"
                );
                assert!(
                    ts.floats.is_empty() || *ts.floats.iter().max().unwrap() < MAX_FLOAT_BITS,
                    "can't double all float types"
                );
            }
            DerivedFunc::SplitLanes => {
                assert!(
                    ts.ints.is_empty() || *ts.ints.iter().min().unwrap() > 8,
                    "can't halve all integer types"
                );
                assert!(
                    ts.floats.is_empty() || *ts.floats.iter().min().unwrap() > 16,
                    "can't halve all float types"
                );
                assert!(
                    *ts.lanes.iter().max().unwrap() < MAX_LANES,
                    "can't double 256 lanes"
                );
            }
            DerivedFunc::MergeLanes => {
                assert!(
                    ts.ints.is_empty() || *ts.ints.iter().max().unwrap() < MAX_BITS,
                    "can't double all integer types"
                );
                assert!(
                    ts.floats.is_empty() || *ts.floats.iter().max().unwrap() < MAX_FLOAT_BITS,
                    "can't double all float types"
                );
                assert!(
                    *ts.lanes.iter().min().unwrap() > 1,
                    "can't halve a scalar type"
                );
            }
            DerivedFunc::Narrower => {
                assert_eq!(
                    *ts.lanes.iter().max().unwrap(),
                    1,
                    "The `narrower` constraint does not apply to vectors"
                );
                assert!(
                    (!ts.ints.is_empty() || !ts.floats.is_empty()) && ts.dynamic_lanes.is_empty(),
                    "The `narrower` constraint only applies to scalar ints or floats"
                );
            }
            DerivedFunc::Wider => {
                assert_eq!(
                    *ts.lanes.iter().max().unwrap(),
                    1,
                    "The `wider` constraint does not apply to vectors"
                );
                assert!(
                    (!ts.ints.is_empty() || !ts.floats.is_empty()) && ts.dynamic_lanes.is_empty(),
                    "The `wider` constraint only applies to scalar ints or floats"
                );
            }
            DerivedFunc::LaneOf | DerivedFunc::AsTruthy | DerivedFunc::DynamicToVector => {
                /* no particular assertions */
            }
        }

        TypeVar {
            content: Rc::new(RefCell::new(TypeVarContent {
                name: format!("{}({})", derived_func.name(), self.name),
                doc: "".into(),
                type_set: ts,
                base: Some(TypeVarParent {
                    type_var: self.clone(),
                    derived_func,
                }),
            })),
        }
    }

    pub fn lane_of(&self) -> TypeVar {
        self.derived(DerivedFunc::LaneOf)
    }
    pub fn as_truthy(&self) -> TypeVar {
        self.derived(DerivedFunc::AsTruthy)
    }
    pub fn half_width(&self) -> TypeVar {
        self.derived(DerivedFunc::HalfWidth)
    }
    pub fn double_width(&self) -> TypeVar {
        self.derived(DerivedFunc::DoubleWidth)
    }
    pub fn split_lanes(&self) -> TypeVar {
        self.derived(DerivedFunc::SplitLanes)
    }
    pub fn merge_lanes(&self) -> TypeVar {
        self.derived(DerivedFunc::MergeLanes)
    }
    pub fn dynamic_to_vector(&self) -> TypeVar {
        self.derived(DerivedFunc::DynamicToVector)
    }

    /// Make a new [TypeVar] that includes all types narrower than self.
    pub fn narrower(&self) -> TypeVar {
        self.derived(DerivedFunc::Narrower)
    }

    /// Make a new [TypeVar] that includes all types wider than self.
    pub fn wider(&self) -> TypeVar {
        self.derived(DerivedFunc::Wider)
    }
}

impl From<&TypeVar> for TypeVar {
    fn from(type_var: &TypeVar) -> Self {
        type_var.clone()
    }
}
impl From<ValueType> for TypeVar {
    fn from(value_type: ValueType) -> Self {
        TypeVar::new_singleton(value_type)
    }
}

// Hash TypeVars by pointers.
// There might be a better way to do this, but since TypeVar's content (namely TypeSet) can be
// mutated, it makes sense to use pointer equality/hashing here.
impl hash::Hash for TypeVar {
    fn hash<H: hash::Hasher>(&self, h: &mut H) {
        match &self.base {
            Some(base) => {
                base.type_var.hash(h);
                base.derived_func.hash(h);
            }
            None => {
                (&**self as *const TypeVarContent).hash(h);
            }
        }
    }
}

impl PartialEq for TypeVar {
    fn eq(&self, other: &TypeVar) -> bool {
        match (&self.base, &other.base) {
            (Some(base1), Some(base2)) => {
                base1.type_var.eq(&base2.type_var) && base1.derived_func == base2.derived_func
            }
            (None, None) => Rc::ptr_eq(&self.content, &other.content),
            _ => false,
        }
    }
}

// Allow TypeVar as map keys, based on pointer equality (see also above PartialEq impl).
impl Eq for TypeVar {}

impl ops::Deref for TypeVar {
    type Target = TypeVarContent;
    fn deref(&self) -> &Self::Target {
        unsafe { self.content.as_ptr().as_ref().unwrap() }
    }
}

#[derive(Clone, Copy, Debug, Hash, PartialEq)]
pub(crate) enum DerivedFunc {
    LaneOf,
    AsTruthy,
    HalfWidth,
    DoubleWidth,
    SplitLanes,
    MergeLanes,
    DynamicToVector,
    Narrower,
    Wider,
}

impl DerivedFunc {
    pub fn name(self) -> &'static str {
        match self {
            DerivedFunc::LaneOf => "lane_of",
            DerivedFunc::AsTruthy => "as_truthy",
            DerivedFunc::HalfWidth => "half_width",
            DerivedFunc::DoubleWidth => "double_width",
            DerivedFunc::SplitLanes => "split_lanes",
            DerivedFunc::MergeLanes => "merge_lanes",
            DerivedFunc::DynamicToVector => "dynamic_to_vector",
            DerivedFunc::Narrower => "narrower",
            DerivedFunc::Wider => "wider",
        }
    }
}

#[derive(Debug, Hash)]
pub(crate) struct TypeVarParent {
    pub type_var: TypeVar,
    pub derived_func: DerivedFunc,
}

/// A set of types.
///
/// We don't allow arbitrary subsets of types, but use a parametrized approach
/// instead.
///
/// Objects of this class can be used as dictionary keys.
///
/// Parametrized type sets are specified in terms of ranges:
/// - The permitted range of vector lanes, where 1 indicates a scalar type.
/// - The permitted range of integer types.
/// - The permitted range of floating point types, and
/// - The permitted range of boolean types.
///
/// The ranges are inclusive from smallest bit-width to largest bit-width.

type RangeBound = u16;
type Range = ops::Range<RangeBound>;
type NumSet = BTreeSet<RangeBound>;

macro_rules! num_set {
    ($($expr:expr),*) => {
        NumSet::from_iter(vec![$($expr),*])
    };
}

#[derive(Clone, PartialEq, Eq, Hash)]
pub(crate) struct TypeSet {
    pub lanes: NumSet,
    pub dynamic_lanes: NumSet,
    pub ints: NumSet,
    pub floats: NumSet,
}

impl TypeSet {
    fn new(lanes: NumSet, dynamic_lanes: NumSet, ints: NumSet, floats: NumSet) -> Self {
        Self {
            lanes,
            dynamic_lanes,
            ints,
            floats,
        }
    }

    /// Return the number of concrete types represented by this typeset.
    pub fn size(&self) -> usize {
        self.lanes.len() * (self.ints.len() + self.floats.len())
            + self.dynamic_lanes.len() * (self.ints.len() + self.floats.len())
    }

    /// Return the image of self across the derived function func.
    fn image(&self, derived_func: DerivedFunc) -> TypeSet {
        match derived_func {
            DerivedFunc::LaneOf => self.lane_of(),
            DerivedFunc::AsTruthy => self.as_truthy(),
            DerivedFunc::HalfWidth => self.half_width(),
            DerivedFunc::DoubleWidth => self.double_width(),
            DerivedFunc::SplitLanes => self.half_width().double_vector(),
            DerivedFunc::MergeLanes => self.double_width().half_vector(),
            DerivedFunc::DynamicToVector => self.dynamic_to_vector(),
            DerivedFunc::Narrower => self.clone(),
            DerivedFunc::Wider => self.clone(),
        }
    }

    /// Return a TypeSet describing the image of self across lane_of.
    fn lane_of(&self) -> TypeSet {
        let mut copy = self.clone();
        copy.lanes = num_set![1];
        copy
    }

    /// Return a TypeSet describing the image of self across as_truthy.
    fn as_truthy(&self) -> TypeSet {
        let mut copy = self.clone();

        // If this type set represents a scalar, `as_truthy` produces an I8, otherwise it returns a
        // vector of the same number of lanes, whose elements are integers of the same width. For
        // example, F32X4 gets turned into I32X4, while I32 gets turned into I8.
        if self.lanes.len() == 1 && self.lanes.contains(&1) {
            copy.ints = NumSet::from([8]);
        } else {
            copy.ints.extend(&self.floats)
        }

        copy.floats = NumSet::new();
        copy
    }

    /// Return a TypeSet describing the image of self across halfwidth.
    fn half_width(&self) -> TypeSet {
        let mut copy = self.clone();
        copy.ints = NumSet::from_iter(self.ints.iter().filter(|&&x| x > 8).map(|&x| x / 2));
        copy.floats = NumSet::from_iter(self.floats.iter().filter(|&&x| x > 16).map(|&x| x / 2));
        copy
    }

    /// Return a TypeSet describing the image of self across doublewidth.
    fn double_width(&self) -> TypeSet {
        let mut copy = self.clone();
        copy.ints = NumSet::from_iter(self.ints.iter().filter(|&&x| x < MAX_BITS).map(|&x| x * 2));
        copy.floats = NumSet::from_iter(
            self.floats
                .iter()
                .filter(|&&x| x < MAX_FLOAT_BITS)
                .map(|&x| x * 2),
        );
        copy
    }

    /// Return a TypeSet describing the image of self across halfvector.
    fn half_vector(&self) -> TypeSet {
        let mut copy = self.clone();
        copy.lanes = NumSet::from_iter(self.lanes.iter().filter(|&&x| x > 1).map(|&x| x / 2));
        copy
    }

    /// Return a TypeSet describing the image of self across doublevector.
    fn double_vector(&self) -> TypeSet {
        let mut copy = self.clone();
        copy.lanes = NumSet::from_iter(
            self.lanes
                .iter()
                .filter(|&&x| x < MAX_LANES)
                .map(|&x| x * 2),
        );
        copy
    }

    fn dynamic_to_vector(&self) -> TypeSet {
        let mut copy = self.clone();
        copy.lanes = NumSet::from_iter(
            self.dynamic_lanes
                .iter()
                .filter(|&&x| x < MAX_LANES)
                .copied(),
        );
        copy.dynamic_lanes = NumSet::new();
        copy
    }

    fn concrete_types(&self) -> Vec<ValueType> {
        let mut ret = Vec::new();
        for &num_lanes in &self.lanes {
            for &bits in &self.ints {
                ret.push(LaneType::int_from_bits(bits).by(num_lanes));
            }
            for &bits in &self.floats {
                ret.push(LaneType::float_from_bits(bits).by(num_lanes));
            }
        }
        for &num_lanes in &self.dynamic_lanes {
            for &bits in &self.ints {
                ret.push(LaneType::int_from_bits(bits).to_dynamic(num_lanes));
            }
            for &bits in &self.floats {
                ret.push(LaneType::float_from_bits(bits).to_dynamic(num_lanes));
            }
        }
        ret
    }

    /// Return the singleton type represented by self. Can only call on typesets containing 1 type.
    fn get_singleton(&self) -> ValueType {
        let mut types = self.concrete_types();
        assert_eq!(types.len(), 1);
        types.remove(0)
    }
}

impl fmt::Debug for TypeSet {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(fmt, "TypeSet(")?;

        let mut subsets = Vec::new();
        if !self.lanes.is_empty() {
            subsets.push(format!(
                "lanes={{{}}}",
                Vec::from_iter(self.lanes.iter().map(|x| x.to_string())).join(", ")
            ));
        }
        if !self.dynamic_lanes.is_empty() {
            subsets.push(format!(
                "dynamic_lanes={{{}}}",
                Vec::from_iter(self.dynamic_lanes.iter().map(|x| x.to_string())).join(", ")
            ));
        }
        if !self.ints.is_empty() {
            subsets.push(format!(
                "ints={{{}}}",
                Vec::from_iter(self.ints.iter().map(|x| x.to_string())).join(", ")
            ));
        }
        if !self.floats.is_empty() {
            subsets.push(format!(
                "floats={{{}}}",
                Vec::from_iter(self.floats.iter().map(|x| x.to_string())).join(", ")
            ));
        }

        write!(fmt, "{})", subsets.join(", "))?;
        Ok(())
    }
}

pub(crate) struct TypeSetBuilder {
    ints: Interval,
    floats: Interval,
    includes_scalars: bool,
    simd_lanes: Interval,
    dynamic_simd_lanes: Interval,
}

impl TypeSetBuilder {
    pub fn new() -> Self {
        Self {
            ints: Interval::None,
            floats: Interval::None,
            includes_scalars: true,
            simd_lanes: Interval::None,
            dynamic_simd_lanes: Interval::None,
        }
    }

    pub fn ints(mut self, interval: impl Into<Interval>) -> Self {
        assert!(self.ints == Interval::None);
        self.ints = interval.into();
        self
    }
    pub fn floats(mut self, interval: impl Into<Interval>) -> Self {
        assert!(self.floats == Interval::None);
        self.floats = interval.into();
        self
    }
    pub fn includes_scalars(mut self, includes_scalars: bool) -> Self {
        self.includes_scalars = includes_scalars;
        self
    }
    pub fn simd_lanes(mut self, interval: impl Into<Interval>) -> Self {
        assert!(self.simd_lanes == Interval::None);
        self.simd_lanes = interval.into();
        self
    }
    pub fn dynamic_simd_lanes(mut self, interval: impl Into<Interval>) -> Self {
        assert!(self.dynamic_simd_lanes == Interval::None);
        self.dynamic_simd_lanes = interval.into();
        self
    }

    pub fn build(self) -> TypeSet {
        let min_lanes = if self.includes_scalars { 1 } else { 2 };

        TypeSet::new(
            range_to_set(self.simd_lanes.to_range(min_lanes..MAX_LANES, Some(1))),
            range_to_set(self.dynamic_simd_lanes.to_range(2..MAX_LANES, None)),
            range_to_set(self.ints.to_range(8..MAX_BITS, None)),
            range_to_set(self.floats.to_range(16..MAX_FLOAT_BITS, None)),
        )
    }
}

#[derive(PartialEq)]
pub(crate) enum Interval {
    None,
    All,
    Range(Range),
}

impl Interval {
    fn to_range(&self, full_range: Range, default: Option<RangeBound>) -> Option<Range> {
        match self {
            Interval::None => default.map(|default_val| default_val..default_val),

            Interval::All => Some(full_range),

            Interval::Range(range) => {
                let (low, high) = (range.start, range.end);
                assert!(low.is_power_of_two());
                assert!(high.is_power_of_two());
                assert!(low <= high);
                assert!(low >= full_range.start);
                assert!(high <= full_range.end);
                Some(low..high)
            }
        }
    }
}

impl From<Range> for Interval {
    fn from(range: Range) -> Self {
        Interval::Range(range)
    }
}

/// Generates a set with all the powers of two included in the range.
fn range_to_set(range: Option<Range>) -> NumSet {
    let mut set = NumSet::new();

    let (low, high) = match range {
        Some(range) => (range.start, range.end),
        None => return set,
    };

    assert!(low.is_power_of_two());
    assert!(high.is_power_of_two());
    assert!(low <= high);

    for i in low.trailing_zeros()..=high.trailing_zeros() {
        assert!(1 << i <= RangeBound::max_value());
        set.insert(1 << i);
    }
    set
}

#[test]
fn test_typevar_builder() {
    let type_set = TypeSetBuilder::new().ints(Interval::All).build();
    assert_eq!(type_set.lanes, num_set![1]);
    assert!(type_set.floats.is_empty());
    assert_eq!(type_set.ints, num_set![8, 16, 32, 64, 128]);

    let type_set = TypeSetBuilder::new().floats(Interval::All).build();
    assert_eq!(type_set.lanes, num_set![1]);
    assert_eq!(type_set.floats, num_set![16, 32, 64, 128]);
    assert!(type_set.ints.is_empty());

    let type_set = TypeSetBuilder::new()
        .floats(Interval::All)
        .simd_lanes(Interval::All)
        .includes_scalars(false)
        .build();
    assert_eq!(type_set.lanes, num_set![2, 4, 8, 16, 32, 64, 128, 256]);
    assert_eq!(type_set.floats, num_set![16, 32, 64, 128]);
    assert!(type_set.ints.is_empty());

    let type_set = TypeSetBuilder::new()
        .floats(Interval::All)
        .simd_lanes(Interval::All)
        .includes_scalars(true)
        .build();
    assert_eq!(type_set.lanes, num_set![1, 2, 4, 8, 16, 32, 64, 128, 256]);
    assert_eq!(type_set.floats, num_set![16, 32, 64, 128]);
    assert!(type_set.ints.is_empty());

    let type_set = TypeSetBuilder::new()
        .floats(Interval::All)
        .simd_lanes(Interval::All)
        .includes_scalars(false)
        .build();
    assert_eq!(type_set.lanes, num_set![2, 4, 8, 16, 32, 64, 128, 256]);
    assert_eq!(type_set.floats, num_set![16, 32, 64, 128]);
    assert!(type_set.dynamic_lanes.is_empty());
    assert!(type_set.ints.is_empty());

    let type_set = TypeSetBuilder::new()
        .ints(Interval::All)
        .floats(Interval::All)
        .dynamic_simd_lanes(Interval::All)
        .includes_scalars(false)
        .build();
    assert_eq!(
        type_set.dynamic_lanes,
        num_set![2, 4, 8, 16, 32, 64, 128, 256]
    );
    assert_eq!(type_set.ints, num_set![8, 16, 32, 64, 128]);
    assert_eq!(type_set.floats, num_set![16, 32, 64, 128]);
    assert_eq!(type_set.lanes, num_set![1]);

    let type_set = TypeSetBuilder::new()
        .floats(Interval::All)
        .dynamic_simd_lanes(Interval::All)
        .includes_scalars(false)
        .build();
    assert_eq!(
        type_set.dynamic_lanes,
        num_set![2, 4, 8, 16, 32, 64, 128, 256]
    );
    assert_eq!(type_set.floats, num_set![16, 32, 64, 128]);
    assert_eq!(type_set.lanes, num_set![1]);
    assert!(type_set.ints.is_empty());

    let type_set = TypeSetBuilder::new().ints(16..64).build();
    assert_eq!(type_set.lanes, num_set![1]);
    assert_eq!(type_set.ints, num_set![16, 32, 64]);
    assert!(type_set.floats.is_empty());
}

#[test]
fn test_dynamic_to_vector() {
    // We don't generate single lane dynamic types, so the maximum number of
    // lanes we support is 128, as MAX_BITS is 256.
    assert_eq!(
        TypeSetBuilder::new()
            .dynamic_simd_lanes(Interval::All)
            .ints(Interval::All)
            .build()
            .dynamic_to_vector(),
        TypeSetBuilder::new()
            .simd_lanes(2..128)
            .ints(Interval::All)
            .build()
    );
    assert_eq!(
        TypeSetBuilder::new()
            .dynamic_simd_lanes(Interval::All)
            .floats(Interval::All)
            .build()
            .dynamic_to_vector(),
        TypeSetBuilder::new()
            .simd_lanes(2..128)
            .floats(Interval::All)
            .build()
    );
}

#[test]
#[should_panic]
fn test_typevar_builder_too_high_bound_panic() {
    TypeSetBuilder::new().ints(16..2 * MAX_BITS).build();
}

#[test]
#[should_panic]
fn test_typevar_builder_inverted_bounds_panic() {
    TypeSetBuilder::new().ints(32..16).build();
}

#[test]
fn test_as_truthy() {
    let a = TypeSetBuilder::new()
        .simd_lanes(2..8)
        .ints(8..8)
        .floats(32..32)
        .build();
    assert_eq!(
        a.lane_of(),
        TypeSetBuilder::new().ints(8..8).floats(32..32).build()
    );

    let mut a_as_truthy = TypeSetBuilder::new().simd_lanes(2..8).build();
    a_as_truthy.ints = num_set![8, 32];
    assert_eq!(a.as_truthy(), a_as_truthy);

    let a = TypeSetBuilder::new().ints(8..32).floats(32..64).build();
    let a_as_truthy = TypeSetBuilder::new().ints(8..8).build();
    assert_eq!(a.as_truthy(), a_as_truthy);
}

#[test]
fn test_forward_images() {
    let empty_set = TypeSetBuilder::new().build();

    // Half vector.
    assert_eq!(
        TypeSetBuilder::new()
            .simd_lanes(1..32)
            .build()
            .half_vector(),
        TypeSetBuilder::new().simd_lanes(1..16).build()
    );

    // Double vector.
    assert_eq!(
        TypeSetBuilder::new()
            .simd_lanes(1..32)
            .build()
            .double_vector(),
        TypeSetBuilder::new().simd_lanes(2..64).build()
    );
    assert_eq!(
        TypeSetBuilder::new()
            .simd_lanes(128..256)
            .build()
            .double_vector(),
        TypeSetBuilder::new().simd_lanes(256..256).build()
    );

    // Half width.
    assert_eq!(
        TypeSetBuilder::new().ints(8..32).build().half_width(),
        TypeSetBuilder::new().ints(8..16).build()
    );
    assert_eq!(
        TypeSetBuilder::new().floats(16..16).build().half_width(),
        empty_set
    );
    assert_eq!(
        TypeSetBuilder::new().floats(32..128).build().half_width(),
        TypeSetBuilder::new().floats(16..64).build()
    );

    // Double width.
    assert_eq!(
        TypeSetBuilder::new().ints(8..32).build().double_width(),
        TypeSetBuilder::new().ints(16..64).build()
    );
    assert_eq!(
        TypeSetBuilder::new().ints(32..64).build().double_width(),
        TypeSetBuilder::new().ints(64..128).build()
    );
    assert_eq!(
        TypeSetBuilder::new().floats(32..32).build().double_width(),
        TypeSetBuilder::new().floats(64..64).build()
    );
    assert_eq!(
        TypeSetBuilder::new().floats(16..64).build().double_width(),
        TypeSetBuilder::new().floats(32..128).build()
    );
}

#[test]
#[should_panic]
fn test_typeset_singleton_panic_nonsingleton_types() {
    TypeSetBuilder::new()
        .ints(8..8)
        .floats(32..32)
        .build()
        .get_singleton();
}

#[test]
#[should_panic]
fn test_typeset_singleton_panic_nonsingleton_lanes() {
    TypeSetBuilder::new()
        .simd_lanes(1..2)
        .floats(32..32)
        .build()
        .get_singleton();
}

#[test]
fn test_typeset_singleton() {
    use crate::shared::types as shared_types;
    assert_eq!(
        TypeSetBuilder::new().ints(16..16).build().get_singleton(),
        ValueType::Lane(shared_types::Int::I16.into())
    );
    assert_eq!(
        TypeSetBuilder::new().floats(64..64).build().get_singleton(),
        ValueType::Lane(shared_types::Float::F64.into())
    );
    assert_eq!(
        TypeSetBuilder::new()
            .simd_lanes(4..4)
            .ints(32..32)
            .build()
            .get_singleton(),
        LaneType::from(shared_types::Int::I32).by(4)
    );
}

#[test]
fn test_typevar_functions() {
    let x = TypeVar::new(
        "x",
        "i16 and up",
        TypeSetBuilder::new().ints(16..64).build(),
    );
    assert_eq!(x.half_width().name, "half_width(x)");
    assert_eq!(
        x.half_width().double_width().name,
        "double_width(half_width(x))"
    );

    let x = TypeVar::new("x", "up to i32", TypeSetBuilder::new().ints(8..32).build());
    assert_eq!(x.double_width().name, "double_width(x)");
}

#[test]
fn test_typevar_singleton() {
    use crate::cdsl::types::VectorType;
    use crate::shared::types as shared_types;

    // Test i32.
    let typevar = TypeVar::new_singleton(ValueType::Lane(LaneType::Int(shared_types::Int::I32)));
    assert_eq!(typevar.name, "i32");
    assert_eq!(typevar.type_set.ints, num_set![32]);
    assert!(typevar.type_set.floats.is_empty());
    assert_eq!(typevar.type_set.lanes, num_set![1]);

    // Test f32x4.
    let typevar = TypeVar::new_singleton(ValueType::Vector(VectorType::new(
        LaneType::Float(shared_types::Float::F32),
        4,
    )));
    assert_eq!(typevar.name, "f32x4");
    assert!(typevar.type_set.ints.is_empty());
    assert_eq!(typevar.type_set.floats, num_set![32]);
    assert_eq!(typevar.type_set.lanes, num_set![4]);
}