1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
//! Instruction formats and opcodes.
//!
//! The `instructions` module contains definitions for instruction formats, opcodes, and the
//! in-memory representation of IR instructions.
//!
//! A large part of this module is auto-generated from the instruction descriptions in the meta
//! directory.
use alloc::vec::Vec;
use core::fmt::{self, Display, Formatter};
use core::ops::{Deref, DerefMut};
use core::str::FromStr;
#[cfg(feature = "enable-serde")]
use serde_derive::{Deserialize, Serialize};
use crate::bitset::BitSet;
use crate::entity;
use crate::ir::{
self,
condcodes::{FloatCC, IntCC},
trapcode::TrapCode,
types, Block, FuncRef, MemFlags, SigRef, StackSlot, Type, Value,
};
/// Some instructions use an external list of argument values because there is not enough space in
/// the 16-byte `InstructionData` struct. These value lists are stored in a memory pool in
/// `dfg.value_lists`.
pub type ValueList = entity::EntityList<Value>;
/// Memory pool for holding value lists. See `ValueList`.
pub type ValueListPool = entity::ListPool<Value>;
/// A pair of a Block and its arguments, stored in a single EntityList internally.
///
/// NOTE: We don't expose either value_to_block or block_to_value outside of this module because
/// this operation is not generally safe. However, as the two share the same underlying layout,
/// they can be stored in the same value pool.
///
/// BlockCall makes use of this shared layout by storing all of its contents (a block and its
/// argument) in a single EntityList. This is a bit better than introducing a new entity type for
/// the pair of a block name and the arguments entity list, as we don't pay any indirection penalty
/// to get to the argument values -- they're stored in-line with the block in the same list.
///
/// The BlockCall::new function guarantees this layout by requiring a block argument that's written
/// in as the first element of the EntityList. Any subsequent entries are always assumed to be real
/// Values.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct BlockCall {
/// The underlying storage for the BlockCall. The first element of the values EntityList is
/// guaranteed to always be a Block encoded as a Value via BlockCall::block_to_value.
/// Consequently, the values entity list is never empty.
values: entity::EntityList<Value>,
}
impl BlockCall {
// NOTE: the only uses of this function should be internal to BlockCall. See the block comment
// on BlockCall for more context.
fn value_to_block(val: Value) -> Block {
Block::from_u32(val.as_u32())
}
// NOTE: the only uses of this function should be internal to BlockCall. See the block comment
// on BlockCall for more context.
fn block_to_value(block: Block) -> Value {
Value::from_u32(block.as_u32())
}
/// Construct a BlockCall with the given block and arguments.
pub fn new(block: Block, args: &[Value], pool: &mut ValueListPool) -> Self {
let mut values = ValueList::default();
values.push(Self::block_to_value(block), pool);
values.extend(args.iter().copied(), pool);
Self { values }
}
/// Return the block for this BlockCall.
pub fn block(&self, pool: &ValueListPool) -> Block {
let val = self.values.first(pool).unwrap();
Self::value_to_block(val)
}
/// Replace the block for this BlockCall.
pub fn set_block(&mut self, block: Block, pool: &mut ValueListPool) {
*self.values.get_mut(0, pool).unwrap() = Self::block_to_value(block);
}
/// Append an argument to the block args.
pub fn append_argument(&mut self, arg: Value, pool: &mut ValueListPool) {
self.values.push(arg, pool);
}
/// Return a slice for the arguments of this block.
pub fn args_slice<'a>(&self, pool: &'a ValueListPool) -> &'a [Value] {
&self.values.as_slice(pool)[1..]
}
/// Return a slice for the arguments of this block.
pub fn args_slice_mut<'a>(&'a mut self, pool: &'a mut ValueListPool) -> &'a mut [Value] {
&mut self.values.as_mut_slice(pool)[1..]
}
/// Remove the argument at ix from the argument list.
pub fn remove(&mut self, ix: usize, pool: &mut ValueListPool) {
self.values.remove(1 + ix, pool)
}
/// Clear out the arguments list.
pub fn clear(&mut self, pool: &mut ValueListPool) {
self.values.truncate(1, pool)
}
/// Appends multiple elements to the arguments.
pub fn extend<I>(&mut self, elements: I, pool: &mut ValueListPool)
where
I: IntoIterator<Item = Value>,
{
self.values.extend(elements, pool)
}
/// Return a value that can display this block call.
pub fn display<'a>(&self, pool: &'a ValueListPool) -> DisplayBlockCall<'a> {
DisplayBlockCall { block: *self, pool }
}
/// Deep-clone the underlying list in the same pool. The returned
/// list will have identical contents but changes to this list
/// will not change its contents or vice-versa.
pub fn deep_clone(&self, pool: &mut ValueListPool) -> Self {
Self {
values: self.values.deep_clone(pool),
}
}
}
/// Wrapper for the context needed to display a [BlockCall] value.
pub struct DisplayBlockCall<'a> {
block: BlockCall,
pool: &'a ValueListPool,
}
impl<'a> Display for DisplayBlockCall<'a> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.block.block(&self.pool))?;
let args = self.block.args_slice(&self.pool);
if !args.is_empty() {
write!(f, "(")?;
for (ix, arg) in args.iter().enumerate() {
if ix > 0 {
write!(f, ", ")?;
}
write!(f, "{}", arg)?;
}
write!(f, ")")?;
}
Ok(())
}
}
// Include code generated by `cranelift-codegen/meta/src/gen_inst.rs`. This file contains:
//
// - The `pub enum InstructionFormat` enum with all the instruction formats.
// - The `pub enum InstructionData` enum with all the instruction data fields.
// - The `pub enum Opcode` definition with all known opcodes,
// - The `const OPCODE_FORMAT: [InstructionFormat; N]` table.
// - The private `fn opcode_name(Opcode) -> &'static str` function, and
// - The hash table `const OPCODE_HASH_TABLE: [Opcode; N]`.
//
// For value type constraints:
//
// - The `const OPCODE_CONSTRAINTS : [OpcodeConstraints; N]` table.
// - The `const TYPE_SETS : [ValueTypeSet; N]` table.
// - The `const OPERAND_CONSTRAINTS : [OperandConstraint; N]` table.
//
include!(concat!(env!("OUT_DIR"), "/opcodes.rs"));
impl Display for Opcode {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", opcode_name(*self))
}
}
impl Opcode {
/// Get the instruction format for this opcode.
pub fn format(self) -> InstructionFormat {
OPCODE_FORMAT[self as usize - 1]
}
/// Get the constraint descriptor for this opcode.
/// Panic if this is called on `NotAnOpcode`.
pub fn constraints(self) -> OpcodeConstraints {
OPCODE_CONSTRAINTS[self as usize - 1]
}
/// Returns true if the instruction is a resumable trap.
pub fn is_resumable_trap(&self) -> bool {
match self {
Opcode::ResumableTrap | Opcode::ResumableTrapnz => true,
_ => false,
}
}
}
// This trait really belongs in cranelift-reader where it is used by the `.clif` file parser, but since
// it critically depends on the `opcode_name()` function which is needed here anyway, it lives in
// this module. This also saves us from running the build script twice to generate code for the two
// separate crates.
impl FromStr for Opcode {
type Err = &'static str;
/// Parse an Opcode name from a string.
fn from_str(s: &str) -> Result<Self, &'static str> {
use crate::constant_hash::{probe, simple_hash, Table};
impl<'a> Table<&'a str> for [Option<Opcode>] {
fn len(&self) -> usize {
self.len()
}
fn key(&self, idx: usize) -> Option<&'a str> {
self[idx].map(opcode_name)
}
}
match probe::<&str, [Option<Self>]>(&OPCODE_HASH_TABLE, s, simple_hash(s)) {
Err(_) => Err("Unknown opcode"),
// We unwrap here because probe() should have ensured that the entry
// at this index is not None.
Ok(i) => Ok(OPCODE_HASH_TABLE[i].unwrap()),
}
}
}
/// A variable list of `Value` operands used for function call arguments and passing arguments to
/// basic blocks.
#[derive(Clone, Debug)]
pub struct VariableArgs(Vec<Value>);
impl VariableArgs {
/// Create an empty argument list.
pub fn new() -> Self {
Self(Vec::new())
}
/// Add an argument to the end.
pub fn push(&mut self, v: Value) {
self.0.push(v)
}
/// Check if the list is empty.
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Convert this to a value list in `pool` with `fixed` prepended.
pub fn into_value_list(self, fixed: &[Value], pool: &mut ValueListPool) -> ValueList {
let mut vlist = ValueList::default();
vlist.extend(fixed.iter().cloned(), pool);
vlist.extend(self.0, pool);
vlist
}
}
// Coerce `VariableArgs` into a `&[Value]` slice.
impl Deref for VariableArgs {
type Target = [Value];
fn deref(&self) -> &[Value] {
&self.0
}
}
impl DerefMut for VariableArgs {
fn deref_mut(&mut self) -> &mut [Value] {
&mut self.0
}
}
impl Display for VariableArgs {
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
for (i, val) in self.0.iter().enumerate() {
if i == 0 {
write!(fmt, "{}", val)?;
} else {
write!(fmt, ", {}", val)?;
}
}
Ok(())
}
}
impl Default for VariableArgs {
fn default() -> Self {
Self::new()
}
}
/// Analyzing an instruction.
///
/// Avoid large matches on instruction formats by using the methods defined here to examine
/// instructions.
impl InstructionData {
/// Get the destinations of this instruction, if it's a branch.
///
/// `br_table` returns the empty slice.
pub fn branch_destination<'a>(&'a self, jump_tables: &'a ir::JumpTables) -> &[BlockCall] {
match self {
Self::Jump {
ref destination, ..
} => std::slice::from_ref(destination),
Self::Brif { blocks, .. } => blocks.as_slice(),
Self::BranchTable { table, .. } => jump_tables.get(*table).unwrap().all_branches(),
_ => {
debug_assert!(!self.opcode().is_branch());
&[]
}
}
}
/// Get a mutable slice of the destinations of this instruction, if it's a branch.
///
/// `br_table` returns the empty slice.
pub fn branch_destination_mut<'a>(
&'a mut self,
jump_tables: &'a mut ir::JumpTables,
) -> &mut [BlockCall] {
match self {
Self::Jump {
ref mut destination,
..
} => std::slice::from_mut(destination),
Self::Brif { blocks, .. } => blocks.as_mut_slice(),
Self::BranchTable { table, .. } => {
jump_tables.get_mut(*table).unwrap().all_branches_mut()
}
_ => {
debug_assert!(!self.opcode().is_branch());
&mut []
}
}
}
/// If this is a trapping instruction, get its trap code. Otherwise, return
/// `None`.
pub fn trap_code(&self) -> Option<TrapCode> {
match *self {
Self::CondTrap { code, .. } | Self::Trap { code, .. } => Some(code),
_ => None,
}
}
/// If this is a control-flow instruction depending on an integer condition, gets its
/// condition. Otherwise, return `None`.
pub fn cond_code(&self) -> Option<IntCC> {
match self {
&InstructionData::IntCompare { cond, .. }
| &InstructionData::IntCompareImm { cond, .. } => Some(cond),
_ => None,
}
}
/// If this is a control-flow instruction depending on a floating-point condition, gets its
/// condition. Otherwise, return `None`.
pub fn fp_cond_code(&self) -> Option<FloatCC> {
match self {
&InstructionData::FloatCompare { cond, .. } => Some(cond),
_ => None,
}
}
/// If this is a trapping instruction, get an exclusive reference to its
/// trap code. Otherwise, return `None`.
pub fn trap_code_mut(&mut self) -> Option<&mut TrapCode> {
match self {
Self::CondTrap { code, .. } | Self::Trap { code, .. } => Some(code),
_ => None,
}
}
/// If this is an atomic read/modify/write instruction, return its subopcode.
pub fn atomic_rmw_op(&self) -> Option<ir::AtomicRmwOp> {
match self {
&InstructionData::AtomicRmw { op, .. } => Some(op),
_ => None,
}
}
/// If this is a load/store instruction, returns its immediate offset.
pub fn load_store_offset(&self) -> Option<i32> {
match self {
&InstructionData::Load { offset, .. }
| &InstructionData::StackLoad { offset, .. }
| &InstructionData::Store { offset, .. }
| &InstructionData::StackStore { offset, .. } => Some(offset.into()),
_ => None,
}
}
/// If this is a load/store instruction, return its memory flags.
pub fn memflags(&self) -> Option<MemFlags> {
match self {
&InstructionData::Load { flags, .. }
| &InstructionData::LoadNoOffset { flags, .. }
| &InstructionData::Store { flags, .. }
| &InstructionData::StoreNoOffset { flags, .. }
| &InstructionData::AtomicCas { flags, .. }
| &InstructionData::AtomicRmw { flags, .. } => Some(flags),
_ => None,
}
}
/// If this instruction references a stack slot, return it
pub fn stack_slot(&self) -> Option<StackSlot> {
match self {
&InstructionData::StackStore { stack_slot, .. }
| &InstructionData::StackLoad { stack_slot, .. } => Some(stack_slot),
_ => None,
}
}
/// Return information about a call instruction.
///
/// Any instruction that can call another function reveals its call signature here.
pub fn analyze_call<'a>(&'a self, pool: &'a ValueListPool) -> CallInfo<'a> {
match *self {
Self::Call {
func_ref, ref args, ..
} => CallInfo::Direct(func_ref, args.as_slice(pool)),
Self::CallIndirect {
sig_ref, ref args, ..
} => CallInfo::Indirect(sig_ref, &args.as_slice(pool)[1..]),
_ => {
debug_assert!(!self.opcode().is_call());
CallInfo::NotACall
}
}
}
#[inline]
pub(crate) fn sign_extend_immediates(&mut self, ctrl_typevar: Type) {
if ctrl_typevar.is_invalid() {
return;
}
let bit_width = ctrl_typevar.bits();
match self {
Self::BinaryImm64 {
opcode,
arg: _,
imm,
} => {
if *opcode == Opcode::SdivImm || *opcode == Opcode::SremImm {
imm.sign_extend_from_width(bit_width);
}
}
Self::IntCompareImm {
opcode,
arg: _,
cond,
imm,
} => {
debug_assert_eq!(*opcode, Opcode::IcmpImm);
if cond.unsigned() != *cond {
imm.sign_extend_from_width(bit_width);
}
}
_ => {}
}
}
}
/// Information about call instructions.
pub enum CallInfo<'a> {
/// This is not a call instruction.
NotACall,
/// This is a direct call to an external function declared in the preamble. See
/// `DataFlowGraph.ext_funcs`.
Direct(FuncRef, &'a [Value]),
/// This is an indirect call with the specified signature. See `DataFlowGraph.signatures`.
Indirect(SigRef, &'a [Value]),
}
/// Value type constraints for a given opcode.
///
/// The `InstructionFormat` determines the constraints on most operands, but `Value` operands and
/// results are not determined by the format. Every `Opcode` has an associated
/// `OpcodeConstraints` object that provides the missing details.
#[derive(Clone, Copy)]
pub struct OpcodeConstraints {
/// Flags for this opcode encoded as a bit field:
///
/// Bits 0-2:
/// Number of fixed result values. This does not include `variable_args` results as are
/// produced by call instructions.
///
/// Bit 3:
/// This opcode is polymorphic and the controlling type variable can be inferred from the
/// designated input operand. This is the `typevar_operand` index given to the
/// `InstructionFormat` meta language object. When this bit is not set, the controlling
/// type variable must be the first output value instead.
///
/// Bit 4:
/// This opcode is polymorphic and the controlling type variable does *not* appear as the
/// first result type.
///
/// Bits 5-7:
/// Number of fixed value arguments. The minimum required number of value operands.
flags: u8,
/// Permitted set of types for the controlling type variable as an index into `TYPE_SETS`.
typeset_offset: u8,
/// Offset into `OPERAND_CONSTRAINT` table of the descriptors for this opcode. The first
/// `num_fixed_results()` entries describe the result constraints, then follows constraints for
/// the fixed `Value` input operands. (`num_fixed_value_arguments()` of them).
constraint_offset: u16,
}
impl OpcodeConstraints {
/// Can the controlling type variable for this opcode be inferred from the designated value
/// input operand?
/// This also implies that this opcode is polymorphic.
pub fn use_typevar_operand(self) -> bool {
(self.flags & 0x8) != 0
}
/// Is it necessary to look at the designated value input operand in order to determine the
/// controlling type variable, or is it good enough to use the first return type?
///
/// Most polymorphic instructions produce a single result with the type of the controlling type
/// variable. A few polymorphic instructions either don't produce any results, or produce
/// results with a fixed type. These instructions return `true`.
pub fn requires_typevar_operand(self) -> bool {
(self.flags & 0x10) != 0
}
/// Get the number of *fixed* result values produced by this opcode.
/// This does not include `variable_args` produced by calls.
pub fn num_fixed_results(self) -> usize {
(self.flags & 0x7) as usize
}
/// Get the number of *fixed* input values required by this opcode.
///
/// This does not include `variable_args` arguments on call and branch instructions.
///
/// The number of fixed input values is usually implied by the instruction format, but
/// instruction formats that use a `ValueList` put both fixed and variable arguments in the
/// list. This method returns the *minimum* number of values required in the value list.
pub fn num_fixed_value_arguments(self) -> usize {
((self.flags >> 5) & 0x7) as usize
}
/// Get the offset into `TYPE_SETS` for the controlling type variable.
/// Returns `None` if the instruction is not polymorphic.
fn typeset_offset(self) -> Option<usize> {
let offset = usize::from(self.typeset_offset);
if offset < TYPE_SETS.len() {
Some(offset)
} else {
None
}
}
/// Get the offset into OPERAND_CONSTRAINTS where the descriptors for this opcode begin.
fn constraint_offset(self) -> usize {
self.constraint_offset as usize
}
/// Get the value type of result number `n`, having resolved the controlling type variable to
/// `ctrl_type`.
pub fn result_type(self, n: usize, ctrl_type: Type) -> Type {
debug_assert!(n < self.num_fixed_results(), "Invalid result index");
match OPERAND_CONSTRAINTS[self.constraint_offset() + n].resolve(ctrl_type) {
ResolvedConstraint::Bound(t) => t,
ResolvedConstraint::Free(ts) => panic!("Result constraints can't be free: {:?}", ts),
}
}
/// Get the value type of input value number `n`, having resolved the controlling type variable
/// to `ctrl_type`.
///
/// Unlike results, it is possible for some input values to vary freely within a specific
/// `ValueTypeSet`. This is represented with the `ArgumentConstraint::Free` variant.
pub fn value_argument_constraint(self, n: usize, ctrl_type: Type) -> ResolvedConstraint {
debug_assert!(
n < self.num_fixed_value_arguments(),
"Invalid value argument index"
);
let offset = self.constraint_offset() + self.num_fixed_results();
OPERAND_CONSTRAINTS[offset + n].resolve(ctrl_type)
}
/// Get the typeset of allowed types for the controlling type variable in a polymorphic
/// instruction.
pub fn ctrl_typeset(self) -> Option<ValueTypeSet> {
self.typeset_offset().map(|offset| TYPE_SETS[offset])
}
/// Is this instruction polymorphic?
pub fn is_polymorphic(self) -> bool {
self.ctrl_typeset().is_some()
}
}
type BitSet8 = BitSet<u8>;
type BitSet16 = BitSet<u16>;
/// A value type set describes the permitted set of types for a type variable.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
pub struct ValueTypeSet {
/// Allowed lane sizes
pub lanes: BitSet16,
/// Allowed int widths
pub ints: BitSet8,
/// Allowed float widths
pub floats: BitSet8,
/// Allowed ref widths
pub refs: BitSet8,
/// Allowed dynamic vectors minimum lane sizes
pub dynamic_lanes: BitSet16,
}
impl ValueTypeSet {
/// Is `scalar` part of the base type set?
///
/// Note that the base type set does not have to be included in the type set proper.
fn is_base_type(self, scalar: Type) -> bool {
let l2b = scalar.log2_lane_bits();
if scalar.is_int() {
self.ints.contains(l2b)
} else if scalar.is_float() {
self.floats.contains(l2b)
} else if scalar.is_ref() {
self.refs.contains(l2b)
} else {
false
}
}
/// Does `typ` belong to this set?
pub fn contains(self, typ: Type) -> bool {
if typ.is_dynamic_vector() {
let l2l = typ.log2_min_lane_count();
self.dynamic_lanes.contains(l2l) && self.is_base_type(typ.lane_type())
} else {
let l2l = typ.log2_lane_count();
self.lanes.contains(l2l) && self.is_base_type(typ.lane_type())
}
}
/// Get an example member of this type set.
///
/// This is used for error messages to avoid suggesting invalid types.
pub fn example(self) -> Type {
let t = if self.ints.max().unwrap_or(0) > 5 {
types::I32
} else if self.floats.max().unwrap_or(0) > 5 {
types::F32
} else {
types::I8
};
t.by(1 << self.lanes.min().unwrap()).unwrap()
}
}
/// Operand constraints. This describes the value type constraints on a single `Value` operand.
enum OperandConstraint {
/// This operand has a concrete value type.
Concrete(Type),
/// This operand can vary freely within the given type set.
/// The type set is identified by its index into the TYPE_SETS constant table.
Free(u8),
/// This operand is the same type as the controlling type variable.
Same,
/// This operand is `ctrlType.lane_of()`.
LaneOf,
/// This operand is `ctrlType.as_truthy()`.
AsTruthy,
/// This operand is `ctrlType.half_width()`.
HalfWidth,
/// This operand is `ctrlType.double_width()`.
DoubleWidth,
/// This operand is `ctrlType.split_lanes()`.
SplitLanes,
/// This operand is `ctrlType.merge_lanes()`.
MergeLanes,
/// This operands is `ctrlType.dynamic_to_vector()`.
DynamicToVector,
/// This operand is `ctrlType.narrower()`.
Narrower,
/// This operand is `ctrlType.wider()`.
Wider,
}
impl OperandConstraint {
/// Resolve this operand constraint into a concrete value type, given the value of the
/// controlling type variable.
pub fn resolve(&self, ctrl_type: Type) -> ResolvedConstraint {
use self::OperandConstraint::*;
use self::ResolvedConstraint::Bound;
match *self {
Concrete(t) => Bound(t),
Free(vts) => ResolvedConstraint::Free(TYPE_SETS[vts as usize]),
Same => Bound(ctrl_type),
LaneOf => Bound(ctrl_type.lane_of()),
AsTruthy => Bound(ctrl_type.as_truthy()),
HalfWidth => Bound(ctrl_type.half_width().expect("invalid type for half_width")),
DoubleWidth => Bound(
ctrl_type
.double_width()
.expect("invalid type for double_width"),
),
SplitLanes => {
if ctrl_type.is_dynamic_vector() {
Bound(
ctrl_type
.dynamic_to_vector()
.expect("invalid type for dynamic_to_vector")
.split_lanes()
.expect("invalid type for split_lanes")
.vector_to_dynamic()
.expect("invalid dynamic type"),
)
} else {
Bound(
ctrl_type
.split_lanes()
.expect("invalid type for split_lanes"),
)
}
}
MergeLanes => {
if ctrl_type.is_dynamic_vector() {
Bound(
ctrl_type
.dynamic_to_vector()
.expect("invalid type for dynamic_to_vector")
.merge_lanes()
.expect("invalid type for merge_lanes")
.vector_to_dynamic()
.expect("invalid dynamic type"),
)
} else {
Bound(
ctrl_type
.merge_lanes()
.expect("invalid type for merge_lanes"),
)
}
}
DynamicToVector => Bound(
ctrl_type
.dynamic_to_vector()
.expect("invalid type for dynamic_to_vector"),
),
Narrower => {
let ctrl_type_bits = ctrl_type.log2_lane_bits();
let mut tys = ValueTypeSet::default();
// We're testing scalar values, only.
tys.lanes = BitSet::from_range(0, 1);
if ctrl_type.is_int() {
// The upper bound in from_range is exclusive, and we want to exclude the
// control type to construct the interval of [I8, ctrl_type).
tys.ints = BitSet8::from_range(3, ctrl_type_bits as u8);
} else if ctrl_type.is_float() {
// The upper bound in from_range is exclusive, and we want to exclude the
// control type to construct the interval of [F32, ctrl_type).
tys.floats = BitSet8::from_range(5, ctrl_type_bits as u8);
} else {
panic!("The Narrower constraint only operates on floats or ints");
}
ResolvedConstraint::Free(tys)
}
Wider => {
let ctrl_type_bits = ctrl_type.log2_lane_bits();
let mut tys = ValueTypeSet::default();
// We're testing scalar values, only.
tys.lanes = BitSet::from_range(0, 1);
if ctrl_type.is_int() {
let lower_bound = ctrl_type_bits as u8 + 1;
// The largest integer type we can represent in `BitSet8` is I128, which is
// represented by bit 7 in the bit set. Adding one to exclude I128 from the
// lower bound would overflow as 2^8 doesn't fit in a u8, but this would
// already describe the empty set so instead we leave `ints` in its default
// empty state.
if lower_bound < BitSet8::bits() as u8 {
// The interval should include all types wider than `ctrl_type`, so we use
// `2^8` as the upper bound, and add one to the bits of `ctrl_type` to define
// the interval `(ctrl_type, I128]`.
tys.ints = BitSet8::from_range(lower_bound, 8);
}
} else if ctrl_type.is_float() {
// The interval should include all float types wider than `ctrl_type`, so we
// use `2^7` as the upper bound, and add one to the bits of `ctrl_type` to
// define the interval `(ctrl_type, F64]`.
tys.floats = BitSet8::from_range(ctrl_type_bits as u8 + 1, 7);
} else {
panic!("The Wider constraint only operates on floats or ints");
}
ResolvedConstraint::Free(tys)
}
}
}
}
/// The type constraint on a value argument once the controlling type variable is known.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ResolvedConstraint {
/// The operand is bound to a known type.
Bound(Type),
/// The operand type can vary freely within the given set.
Free(ValueTypeSet),
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::string::ToString;
#[test]
fn inst_data_is_copy() {
fn is_copy<T: Copy>() {}
is_copy::<InstructionData>();
}
#[test]
fn inst_data_size() {
// The size of `InstructionData` is performance sensitive, so make sure
// we don't regress it unintentionally.
assert_eq!(std::mem::size_of::<InstructionData>(), 16);
}
#[test]
fn opcodes() {
use core::mem;
let x = Opcode::Iadd;
let mut y = Opcode::Isub;
assert!(x != y);
y = Opcode::Iadd;
assert_eq!(x, y);
assert_eq!(x.format(), InstructionFormat::Binary);
assert_eq!(format!("{:?}", Opcode::IaddImm), "IaddImm");
assert_eq!(Opcode::IaddImm.to_string(), "iadd_imm");
// Check the matcher.
assert_eq!("iadd".parse::<Opcode>(), Ok(Opcode::Iadd));
assert_eq!("iadd_imm".parse::<Opcode>(), Ok(Opcode::IaddImm));
assert_eq!("iadd\0".parse::<Opcode>(), Err("Unknown opcode"));
assert_eq!("".parse::<Opcode>(), Err("Unknown opcode"));
assert_eq!("\0".parse::<Opcode>(), Err("Unknown opcode"));
// Opcode is a single byte, and because Option<Opcode> originally came to 2 bytes, early on
// Opcode included a variant NotAnOpcode to avoid the unnecessary bloat. Since then the Rust
// compiler has brought in NonZero optimization, meaning that an enum not using the 0 value
// can be optional for no size cost. We want to ensure Option<Opcode> remains small.
assert_eq!(mem::size_of::<Opcode>(), mem::size_of::<Option<Opcode>>());
}
#[test]
fn instruction_data() {
use core::mem;
// The size of the `InstructionData` enum is important for performance. It should not
// exceed 16 bytes. Use `Box<FooData>` out-of-line payloads for instruction formats that
// require more space than that. It would be fine with a data structure smaller than 16
// bytes, but what are the odds of that?
assert_eq!(mem::size_of::<InstructionData>(), 16);
}
#[test]
fn constraints() {
let a = Opcode::Iadd.constraints();
assert!(a.use_typevar_operand());
assert!(!a.requires_typevar_operand());
assert_eq!(a.num_fixed_results(), 1);
assert_eq!(a.num_fixed_value_arguments(), 2);
assert_eq!(a.result_type(0, types::I32), types::I32);
assert_eq!(a.result_type(0, types::I8), types::I8);
assert_eq!(
a.value_argument_constraint(0, types::I32),
ResolvedConstraint::Bound(types::I32)
);
assert_eq!(
a.value_argument_constraint(1, types::I32),
ResolvedConstraint::Bound(types::I32)
);
let b = Opcode::Bitcast.constraints();
assert!(!b.use_typevar_operand());
assert!(!b.requires_typevar_operand());
assert_eq!(b.num_fixed_results(), 1);
assert_eq!(b.num_fixed_value_arguments(), 1);
assert_eq!(b.result_type(0, types::I32), types::I32);
assert_eq!(b.result_type(0, types::I8), types::I8);
match b.value_argument_constraint(0, types::I32) {
ResolvedConstraint::Free(vts) => assert!(vts.contains(types::F32)),
_ => panic!("Unexpected constraint from value_argument_constraint"),
}
let c = Opcode::Call.constraints();
assert_eq!(c.num_fixed_results(), 0);
assert_eq!(c.num_fixed_value_arguments(), 0);
let i = Opcode::CallIndirect.constraints();
assert_eq!(i.num_fixed_results(), 0);
assert_eq!(i.num_fixed_value_arguments(), 1);
let cmp = Opcode::Icmp.constraints();
assert!(cmp.use_typevar_operand());
assert!(cmp.requires_typevar_operand());
assert_eq!(cmp.num_fixed_results(), 1);
assert_eq!(cmp.num_fixed_value_arguments(), 2);
assert_eq!(cmp.result_type(0, types::I64), types::I8);
}
#[test]
fn value_set() {
use crate::ir::types::*;
let vts = ValueTypeSet {
lanes: BitSet16::from_range(0, 8),
ints: BitSet8::from_range(4, 7),
floats: BitSet8::from_range(0, 0),
refs: BitSet8::from_range(5, 7),
dynamic_lanes: BitSet16::from_range(0, 4),
};
assert!(!vts.contains(I8));
assert!(vts.contains(I32));
assert!(vts.contains(I64));
assert!(vts.contains(I32X4));
assert!(vts.contains(I32X4XN));
assert!(!vts.contains(F32));
assert!(vts.contains(R32));
assert!(vts.contains(R64));
assert_eq!(vts.example().to_string(), "i32");
let vts = ValueTypeSet {
lanes: BitSet16::from_range(0, 8),
ints: BitSet8::from_range(0, 0),
floats: BitSet8::from_range(5, 7),
refs: BitSet8::from_range(0, 0),
dynamic_lanes: BitSet16::from_range(0, 8),
};
assert_eq!(vts.example().to_string(), "f32");
let vts = ValueTypeSet {
lanes: BitSet16::from_range(1, 8),
ints: BitSet8::from_range(0, 0),
floats: BitSet8::from_range(5, 7),
refs: BitSet8::from_range(0, 0),
dynamic_lanes: BitSet16::from_range(0, 8),
};
assert_eq!(vts.example().to_string(), "f32x2");
let vts = ValueTypeSet {
lanes: BitSet16::from_range(2, 8),
ints: BitSet8::from_range(3, 7),
floats: BitSet8::from_range(0, 0),
refs: BitSet8::from_range(0, 0),
dynamic_lanes: BitSet16::from_range(0, 8),
};
assert_eq!(vts.example().to_string(), "i32x4");
let vts = ValueTypeSet {
// TypeSet(lanes=(1, 256), ints=(8, 64))
lanes: BitSet16::from_range(0, 9),
ints: BitSet8::from_range(3, 7),
floats: BitSet8::from_range(0, 0),
refs: BitSet8::from_range(0, 0),
dynamic_lanes: BitSet16::from_range(0, 8),
};
assert!(vts.contains(I32));
assert!(vts.contains(I32X4));
assert!(!vts.contains(R32));
assert!(!vts.contains(R64));
}
}