1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
//! Cranelift instruction builder.
//!
//! A `Builder` provides a convenient interface for inserting instructions into a Cranelift
//! function. Many of its methods are generated from the meta language instruction definitions.

use crate::ir;
use crate::ir::instructions::InstructionFormat;
use crate::ir::types;
use crate::ir::{DataFlowGraph, InstructionData};
use crate::ir::{Inst, Opcode, Type, Value};

/// Base trait for instruction builders.
///
/// The `InstBuilderBase` trait provides the basic functionality required by the methods of the
/// generated `InstBuilder` trait. These methods should not normally be used directly. Use the
/// methods in the `InstBuilder` trait instead.
///
/// Any data type that implements `InstBuilderBase` also gets all the methods of the `InstBuilder`
/// trait.
pub trait InstBuilderBase<'f>: Sized {
    /// Get an immutable reference to the data flow graph that will hold the constructed
    /// instructions.
    fn data_flow_graph(&self) -> &DataFlowGraph;
    /// Get a mutable reference to the data flow graph that will hold the constructed
    /// instructions.
    fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph;

    /// Insert an instruction and return a reference to it, consuming the builder.
    ///
    /// The result types may depend on a controlling type variable. For non-polymorphic
    /// instructions with multiple results, pass `INVALID` for the `ctrl_typevar` argument.
    fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'f mut DataFlowGraph);
}

// Include trait code generated by `cranelift-codegen/meta/src/gen_inst.rs`.
//
// This file defines the `InstBuilder` trait as an extension of `InstBuilderBase` with methods per
// instruction format and per opcode.
include!(concat!(env!("OUT_DIR"), "/inst_builder.rs"));

/// Any type implementing `InstBuilderBase` gets all the `InstBuilder` methods for free.
impl<'f, T: InstBuilderBase<'f>> InstBuilder<'f> for T {}

/// Base trait for instruction inserters.
///
/// This is an alternative base trait for an instruction builder to implement.
///
/// An instruction inserter can be adapted into an instruction builder by wrapping it in an
/// `InsertBuilder`. This provides some common functionality for instruction builders that insert
/// new instructions, as opposed to the `ReplaceBuilder` which overwrites existing instructions.
pub trait InstInserterBase<'f>: Sized {
    /// Get an immutable reference to the data flow graph.
    fn data_flow_graph(&self) -> &DataFlowGraph;

    /// Get a mutable reference to the data flow graph.
    fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph;

    /// Insert a new instruction which belongs to the DFG.
    fn insert_built_inst(self, inst: Inst) -> &'f mut DataFlowGraph;
}

use core::marker::PhantomData;

/// Builder that inserts an instruction at the current position.
///
/// An `InsertBuilder` is a wrapper for an `InstInserterBase` that turns it into an instruction
/// builder with some additional facilities for creating instructions that reuse existing values as
/// their results.
pub struct InsertBuilder<'f, IIB: InstInserterBase<'f>> {
    inserter: IIB,
    unused: PhantomData<&'f u32>,
}

impl<'f, IIB: InstInserterBase<'f>> InsertBuilder<'f, IIB> {
    /// Create a new builder which inserts instructions at `pos`.
    /// The `dfg` and `pos.layout` references should be from the same `Function`.
    pub fn new(inserter: IIB) -> Self {
        Self {
            inserter,
            unused: PhantomData,
        }
    }

    /// Reuse result values in `reuse`.
    ///
    /// Convert this builder into one that will reuse the provided result values instead of
    /// allocating new ones. The provided values for reuse must not be attached to anything. Any
    /// missing result values will be allocated as normal.
    ///
    /// The `reuse` argument is expected to be an array of `Option<Value>`.
    pub fn with_results<Array>(self, reuse: Array) -> InsertReuseBuilder<'f, IIB, Array>
    where
        Array: AsRef<[Option<Value>]>,
    {
        InsertReuseBuilder {
            inserter: self.inserter,
            reuse,
            unused: PhantomData,
        }
    }

    /// Reuse a single result value.
    ///
    /// Convert this into a builder that will reuse `v` as the single result value. The reused
    /// result value `v` must not be attached to anything.
    ///
    /// This method should only be used when building an instruction with exactly one result. Use
    /// `with_results()` for the more general case.
    pub fn with_result(self, v: Value) -> InsertReuseBuilder<'f, IIB, [Option<Value>; 1]> {
        // TODO: Specialize this to return a different builder that just attaches `v` instead of
        // calling `make_inst_results_reusing()`.
        self.with_results([Some(v)])
    }
}

impl<'f, IIB: InstInserterBase<'f>> InstBuilderBase<'f> for InsertBuilder<'f, IIB> {
    fn data_flow_graph(&self) -> &DataFlowGraph {
        self.inserter.data_flow_graph()
    }

    fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph {
        self.inserter.data_flow_graph_mut()
    }

    fn build(mut self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'f mut DataFlowGraph) {
        let inst;
        {
            let dfg = self.inserter.data_flow_graph_mut();
            inst = dfg.make_inst(data);
            dfg.make_inst_results(inst, ctrl_typevar);
        }
        (inst, self.inserter.insert_built_inst(inst))
    }
}

/// Builder that inserts a new instruction like `InsertBuilder`, but reusing result values.
pub struct InsertReuseBuilder<'f, IIB, Array>
where
    IIB: InstInserterBase<'f>,
    Array: AsRef<[Option<Value>]>,
{
    inserter: IIB,
    reuse: Array,
    unused: PhantomData<&'f u32>,
}

impl<'f, IIB, Array> InstBuilderBase<'f> for InsertReuseBuilder<'f, IIB, Array>
where
    IIB: InstInserterBase<'f>,
    Array: AsRef<[Option<Value>]>,
{
    fn data_flow_graph(&self) -> &DataFlowGraph {
        self.inserter.data_flow_graph()
    }

    fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph {
        self.inserter.data_flow_graph_mut()
    }

    fn build(mut self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'f mut DataFlowGraph) {
        let inst;
        {
            let dfg = self.inserter.data_flow_graph_mut();
            inst = dfg.make_inst(data);
            // Make an `Iterator<Item = Option<Value>>`.
            let ru = self.reuse.as_ref().iter().cloned();
            dfg.make_inst_results_reusing(inst, ctrl_typevar, ru);
        }
        (inst, self.inserter.insert_built_inst(inst))
    }
}

/// Instruction builder that replaces an existing instruction.
///
/// The inserted instruction will have the same `Inst` number as the old one.
///
/// If the old instruction still has result values attached, it is assumed that the new instruction
/// produces the same number and types of results. The old result values are preserved. If the
/// replacement instruction format does not support multiple results, the builder panics. It is a
/// bug to leave result values dangling.
pub struct ReplaceBuilder<'f> {
    dfg: &'f mut DataFlowGraph,
    inst: Inst,
}

impl<'f> ReplaceBuilder<'f> {
    /// Create a `ReplaceBuilder` that will overwrite `inst`.
    pub fn new(dfg: &'f mut DataFlowGraph, inst: Inst) -> Self {
        Self { dfg, inst }
    }
}

impl<'f> InstBuilderBase<'f> for ReplaceBuilder<'f> {
    fn data_flow_graph(&self) -> &DataFlowGraph {
        self.dfg
    }

    fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph {
        self.dfg
    }

    fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'f mut DataFlowGraph) {
        // Splat the new instruction on top of the old one.
        self.dfg.insts[self.inst] = data;

        if !self.dfg.has_results(self.inst) {
            // The old result values were either detached or non-existent.
            // Construct new ones.
            self.dfg.make_inst_results(self.inst, ctrl_typevar);
        }

        (self.inst, self.dfg)
    }
}

#[cfg(test)]
mod tests {
    use crate::cursor::{Cursor, FuncCursor};
    use crate::ir::condcodes::*;
    use crate::ir::types::*;
    use crate::ir::{Function, InstBuilder, ValueDef};

    #[test]
    fn types() {
        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        let arg0 = func.dfg.append_block_param(block0, I32);
        let mut pos = FuncCursor::new(&mut func);
        pos.insert_block(block0);

        // Explicit types.
        let v0 = pos.ins().iconst(I32, 3);
        assert_eq!(pos.func.dfg.value_type(v0), I32);

        // Inferred from inputs.
        let v1 = pos.ins().iadd(arg0, v0);
        assert_eq!(pos.func.dfg.value_type(v1), I32);

        // Formula.
        let cmp = pos.ins().icmp(IntCC::Equal, arg0, v0);
        assert_eq!(pos.func.dfg.value_type(cmp), I8);
    }

    #[test]
    fn reuse_results() {
        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        let arg0 = func.dfg.append_block_param(block0, I32);
        let mut pos = FuncCursor::new(&mut func);
        pos.insert_block(block0);

        let v0 = pos.ins().iadd_imm(arg0, 17);
        assert_eq!(pos.func.dfg.value_type(v0), I32);
        let iadd = pos.prev_inst().unwrap();
        assert_eq!(pos.func.dfg.value_def(v0), ValueDef::Result(iadd, 0));

        // Detach v0 and reuse it for a different instruction.
        pos.func.dfg.clear_results(iadd);
        let v0b = pos.ins().with_result(v0).iconst(I32, 3);
        assert_eq!(v0, v0b);
        assert_eq!(pos.current_inst(), Some(iadd));
        let iconst = pos.prev_inst().unwrap();
        assert!(iadd != iconst);
        assert_eq!(pos.func.dfg.value_def(v0), ValueDef::Result(iconst, 0));
    }

    #[test]
    #[should_panic]
    #[cfg(debug_assertions)]
    fn panics_when_inserting_wrong_opcode() {
        use crate::ir::{Opcode, TrapCode};

        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        let mut pos = FuncCursor::new(&mut func);
        pos.insert_block(block0);

        // We are trying to create a Opcode::Return with the InstData::Trap, which is obviously wrong
        pos.ins()
            .Trap(Opcode::Return, I32, TrapCode::BadConversionToInteger);
    }
}