1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
//! Intermediate representation of a function.
//!
//! The `Function` struct defined in this module owns all of its basic blocks and
//! instructions.

use crate::entity::{PrimaryMap, SecondaryMap};
use crate::ir::{
    self, pcc::Fact, Block, DataFlowGraph, DynamicStackSlot, DynamicStackSlotData,
    DynamicStackSlots, DynamicType, ExtFuncData, FuncRef, GlobalValue, GlobalValueData, Inst,
    JumpTable, JumpTableData, Layout, MemoryType, MemoryTypeData, Opcode, SigRef, Signature,
    SourceLocs, StackSlot, StackSlotData, StackSlots, Table, TableData, Type,
};
use crate::isa::CallConv;
use crate::write::write_function;
use crate::HashMap;
#[cfg(feature = "enable-serde")]
use alloc::string::String;
use core::fmt;

#[cfg(feature = "enable-serde")]
use serde::de::{Deserializer, Error};
#[cfg(feature = "enable-serde")]
use serde::ser::Serializer;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};

use super::entities::UserExternalNameRef;
use super::extname::UserFuncName;
use super::{RelSourceLoc, SourceLoc, UserExternalName};

/// A version marker used to ensure that serialized clif ir is never deserialized with a
/// different version of Cranelift.
#[derive(Default, Copy, Clone, Debug, PartialEq, Hash)]
pub struct VersionMarker;

#[cfg(feature = "enable-serde")]
impl Serialize for VersionMarker {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        crate::VERSION.serialize(serializer)
    }
}

#[cfg(feature = "enable-serde")]
impl<'de> Deserialize<'de> for VersionMarker {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        let version = String::deserialize(deserializer)?;
        if version != crate::VERSION {
            return Err(D::Error::custom(&format!(
                "Expected a clif ir function for version {}, found one for version {}",
                crate::VERSION,
                version,
            )));
        }
        Ok(VersionMarker)
    }
}

/// Function parameters used when creating this function, and that will become applied after
/// compilation to materialize the final `CompiledCode`.
#[derive(Clone, PartialEq)]
#[cfg_attr(
    feature = "enable-serde",
    derive(serde_derive::Serialize, serde_derive::Deserialize)
)]
pub struct FunctionParameters {
    /// The first `SourceLoc` appearing in the function, serving as a base for every relative
    /// source loc in the function.
    base_srcloc: Option<SourceLoc>,

    /// External user-defined function references.
    user_named_funcs: PrimaryMap<UserExternalNameRef, UserExternalName>,

    /// Inverted mapping of `user_named_funcs`, to deduplicate internally.
    user_ext_name_to_ref: HashMap<UserExternalName, UserExternalNameRef>,
}

impl FunctionParameters {
    /// Creates a new `FunctionParameters` with the given name.
    pub fn new() -> Self {
        Self {
            base_srcloc: None,
            user_named_funcs: Default::default(),
            user_ext_name_to_ref: Default::default(),
        }
    }

    /// Returns the base `SourceLoc`.
    ///
    /// If it was never explicitly set with `ensure_base_srcloc`, will return an invalid
    /// `SourceLoc`.
    pub fn base_srcloc(&self) -> SourceLoc {
        self.base_srcloc.unwrap_or_default()
    }

    /// Sets the base `SourceLoc`, if not set yet, and returns the base value.
    pub fn ensure_base_srcloc(&mut self, srcloc: SourceLoc) -> SourceLoc {
        match self.base_srcloc {
            Some(val) => val,
            None => {
                self.base_srcloc = Some(srcloc);
                srcloc
            }
        }
    }

    /// Retrieve a `UserExternalNameRef` for the given name, or add a new one.
    ///
    /// This method internally deduplicates same `UserExternalName` so they map to the same
    /// reference.
    pub fn ensure_user_func_name(&mut self, name: UserExternalName) -> UserExternalNameRef {
        if let Some(reff) = self.user_ext_name_to_ref.get(&name) {
            *reff
        } else {
            let reff = self.user_named_funcs.push(name.clone());
            self.user_ext_name_to_ref.insert(name, reff);
            reff
        }
    }

    /// Resets an already existing user function name to a new value.
    pub fn reset_user_func_name(&mut self, index: UserExternalNameRef, name: UserExternalName) {
        if let Some(prev_name) = self.user_named_funcs.get_mut(index) {
            self.user_ext_name_to_ref.remove(prev_name);
            *prev_name = name.clone();
            self.user_ext_name_to_ref.insert(name, index);
        }
    }

    /// Returns the internal mapping of `UserExternalNameRef` to `UserExternalName`.
    pub fn user_named_funcs(&self) -> &PrimaryMap<UserExternalNameRef, UserExternalName> {
        &self.user_named_funcs
    }

    fn clear(&mut self) {
        self.base_srcloc = None;
        self.user_named_funcs.clear();
        self.user_ext_name_to_ref.clear();
    }
}

/// Function fields needed when compiling a function.
///
/// Additionally, these fields can be the same for two functions that would be compiled the same
/// way, and finalized by applying `FunctionParameters` onto their `CompiledCodeStencil`.
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(
    feature = "enable-serde",
    derive(serde_derive::Serialize, serde_derive::Deserialize)
)]
pub struct FunctionStencil {
    /// A version marker used to ensure that serialized clif ir is never deserialized with a
    /// different version of Cranelift.
    // Note: This must be the first field to ensure that Serde will deserialize it before
    // attempting to deserialize other fields that are potentially changed between versions.
    pub version_marker: VersionMarker,

    /// Signature of this function.
    pub signature: Signature,

    /// Sized stack slots allocated in this function.
    pub sized_stack_slots: StackSlots,

    /// Dynamic stack slots allocated in this function.
    pub dynamic_stack_slots: DynamicStackSlots,

    /// Global values referenced.
    pub global_values: PrimaryMap<ir::GlobalValue, ir::GlobalValueData>,

    /// Global value proof-carrying-code facts.
    pub global_value_facts: SecondaryMap<ir::GlobalValue, Option<Fact>>,

    /// Memory types for proof-carrying code.
    pub memory_types: PrimaryMap<ir::MemoryType, ir::MemoryTypeData>,

    /// Tables referenced.
    pub tables: PrimaryMap<ir::Table, ir::TableData>,

    /// Data flow graph containing the primary definition of all instructions, blocks and values.
    pub dfg: DataFlowGraph,

    /// Layout of blocks and instructions in the function body.
    pub layout: Layout,

    /// Source locations.
    ///
    /// Track the original source location for each instruction. The source locations are not
    /// interpreted by Cranelift, only preserved.
    pub srclocs: SourceLocs,

    /// An optional global value which represents an expression evaluating to
    /// the stack limit for this function. This `GlobalValue` will be
    /// interpreted in the prologue, if necessary, to insert a stack check to
    /// ensure that a trap happens if the stack pointer goes below the
    /// threshold specified here.
    pub stack_limit: Option<ir::GlobalValue>,
}

impl FunctionStencil {
    fn clear(&mut self) {
        self.signature.clear(CallConv::Fast);
        self.sized_stack_slots.clear();
        self.dynamic_stack_slots.clear();
        self.global_values.clear();
        self.global_value_facts.clear();
        self.memory_types.clear();
        self.tables.clear();
        self.dfg.clear();
        self.layout.clear();
        self.srclocs.clear();
        self.stack_limit = None;
    }

    /// Creates a jump table in the function, to be used by `br_table` instructions.
    pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable {
        self.dfg.jump_tables.push(data)
    }

    /// Creates a sized stack slot in the function, to be used by `stack_load`, `stack_store`
    /// and `stack_addr` instructions.
    pub fn create_sized_stack_slot(&mut self, data: StackSlotData) -> StackSlot {
        self.sized_stack_slots.push(data)
    }

    /// Creates a dynamic stack slot in the function, to be used by `dynamic_stack_load`,
    /// `dynamic_stack_store` and `dynamic_stack_addr` instructions.
    pub fn create_dynamic_stack_slot(&mut self, data: DynamicStackSlotData) -> DynamicStackSlot {
        self.dynamic_stack_slots.push(data)
    }

    /// Adds a signature which can later be used to declare an external function import.
    pub fn import_signature(&mut self, signature: Signature) -> SigRef {
        self.dfg.signatures.push(signature)
    }

    /// Declares a global value accessible to the function.
    pub fn create_global_value(&mut self, data: GlobalValueData) -> GlobalValue {
        self.global_values.push(data)
    }

    /// Declares a memory type for use by the function.
    pub fn create_memory_type(&mut self, data: MemoryTypeData) -> MemoryType {
        self.memory_types.push(data)
    }

    /// Find the global dyn_scale value associated with given DynamicType.
    pub fn get_dyn_scale(&self, ty: DynamicType) -> GlobalValue {
        self.dfg.dynamic_types.get(ty).unwrap().dynamic_scale
    }

    /// Find the global dyn_scale for the given stack slot.
    pub fn get_dynamic_slot_scale(&self, dss: DynamicStackSlot) -> GlobalValue {
        let dyn_ty = self.dynamic_stack_slots.get(dss).unwrap().dyn_ty;
        self.get_dyn_scale(dyn_ty)
    }

    /// Get a concrete `Type` from a user defined `DynamicType`.
    pub fn get_concrete_dynamic_ty(&self, ty: DynamicType) -> Option<Type> {
        self.dfg
            .dynamic_types
            .get(ty)
            .unwrap_or_else(|| panic!("Undeclared dynamic vector type: {}", ty))
            .concrete()
    }

    /// Declares a table accessible to the function.
    pub fn create_table(&mut self, data: TableData) -> Table {
        self.tables.push(data)
    }

    /// Find a presumed unique special-purpose function parameter value.
    ///
    /// Returns the value of the last `purpose` parameter, or `None` if no such parameter exists.
    pub fn special_param(&self, purpose: ir::ArgumentPurpose) -> Option<ir::Value> {
        let entry = self.layout.entry_block().expect("Function is empty");
        self.signature
            .special_param_index(purpose)
            .map(|i| self.dfg.block_params(entry)[i])
    }

    /// Starts collection of debug information.
    pub fn collect_debug_info(&mut self) {
        self.dfg.collect_debug_info();
    }

    /// Rewrite the branch destination to `new_dest` if the destination matches `old_dest`.
    /// Does nothing if called with a non-jump or non-branch instruction.
    pub fn rewrite_branch_destination(&mut self, inst: Inst, old_dest: Block, new_dest: Block) {
        for dest in self.dfg.insts[inst].branch_destination_mut(&mut self.dfg.jump_tables) {
            if dest.block(&self.dfg.value_lists) == old_dest {
                dest.set_block(new_dest, &mut self.dfg.value_lists)
            }
        }
    }

    /// Checks that the specified block can be encoded as a basic block.
    ///
    /// On error, returns the first invalid instruction and an error message.
    pub fn is_block_basic(&self, block: Block) -> Result<(), (Inst, &'static str)> {
        let dfg = &self.dfg;
        let inst_iter = self.layout.block_insts(block);

        // Ignore all instructions prior to the first branch.
        let mut inst_iter = inst_iter.skip_while(|&inst| !dfg.insts[inst].opcode().is_branch());

        // A conditional branch is permitted in a basic block only when followed
        // by a terminal jump instruction.
        if let Some(_branch) = inst_iter.next() {
            if let Some(next) = inst_iter.next() {
                match dfg.insts[next].opcode() {
                    Opcode::Jump => (),
                    _ => return Err((next, "post-branch instruction not jump")),
                }
            }
        }

        Ok(())
    }

    /// Returns true if the function is function that doesn't call any other functions. This is not
    /// to be confused with a "leaf function" in Windows terminology.
    pub fn is_leaf(&self) -> bool {
        // Conservative result: if there's at least one function signature referenced in this
        // function, assume it is not a leaf.
        let has_signatures = !self.dfg.signatures.is_empty();

        // Under some TLS models, retrieving the address of a TLS variable requires calling a
        // function. Conservatively assume that any function that references a tls global value
        // is not a leaf.
        let has_tls = self.global_values.values().any(|gv| match gv {
            GlobalValueData::Symbol { tls, .. } => *tls,
            _ => false,
        });

        !has_signatures && !has_tls
    }

    /// Replace the `dst` instruction's data with the `src` instruction's data
    /// and then remove `src`.
    ///
    /// `src` and its result values should not be used at all, as any uses would
    /// be left dangling after calling this method.
    ///
    /// `src` and `dst` must have the same number of resulting values, and
    /// `src`'s i^th value must have the same type as `dst`'s i^th value.
    pub fn transplant_inst(&mut self, dst: Inst, src: Inst) {
        debug_assert_eq!(
            self.dfg.inst_results(dst).len(),
            self.dfg.inst_results(src).len()
        );
        debug_assert!(self
            .dfg
            .inst_results(dst)
            .iter()
            .zip(self.dfg.inst_results(src))
            .all(|(a, b)| self.dfg.value_type(*a) == self.dfg.value_type(*b)));

        self.dfg.insts[dst] = self.dfg.insts[src];
        self.layout.remove_inst(src);
    }

    /// Size occupied by all stack slots associated with this function.
    ///
    /// Does not include any padding necessary due to offsets
    pub fn fixed_stack_size(&self) -> u32 {
        self.sized_stack_slots.values().map(|ss| ss.size).sum()
    }

    /// Returns the list of relative source locations for this function.
    pub(crate) fn rel_srclocs(&self) -> &SecondaryMap<Inst, RelSourceLoc> {
        &self.srclocs
    }
}

/// Functions can be cloned, but it is not a very fast operation.
/// The clone will have all the same entity numbers as the original.
#[derive(Clone, PartialEq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Function {
    /// Name of this function.
    ///
    /// Mostly used by `.clif` files, only there for debugging / naming purposes.
    pub name: UserFuncName,

    /// All the fields required for compiling a function, independently of details irrelevant to
    /// compilation and that are stored in the `FunctionParameters` `params` field instead.
    pub stencil: FunctionStencil,

    /// All the parameters that can be applied onto the function stencil, that is, that don't
    /// matter when caching compilation artifacts.
    pub params: FunctionParameters,
}

impl core::ops::Deref for Function {
    type Target = FunctionStencil;

    fn deref(&self) -> &Self::Target {
        &self.stencil
    }
}

impl core::ops::DerefMut for Function {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.stencil
    }
}

impl Function {
    /// Create a function with the given name and signature.
    pub fn with_name_signature(name: UserFuncName, sig: Signature) -> Self {
        Self {
            name,
            stencil: FunctionStencil {
                version_marker: VersionMarker,
                signature: sig,
                sized_stack_slots: StackSlots::new(),
                dynamic_stack_slots: DynamicStackSlots::new(),
                global_values: PrimaryMap::new(),
                global_value_facts: SecondaryMap::new(),
                memory_types: PrimaryMap::new(),
                tables: PrimaryMap::new(),
                dfg: DataFlowGraph::new(),
                layout: Layout::new(),
                srclocs: SecondaryMap::new(),
                stack_limit: None,
            },
            params: FunctionParameters::new(),
        }
    }

    /// Clear all data structures in this function.
    pub fn clear(&mut self) {
        self.stencil.clear();
        self.params.clear();
        self.name = UserFuncName::default();
    }

    /// Create a new empty, anonymous function with a Fast calling convention.
    pub fn new() -> Self {
        Self::with_name_signature(Default::default(), Signature::new(CallConv::Fast))
    }

    /// Return an object that can display this function with correct ISA-specific annotations.
    pub fn display(&self) -> DisplayFunction<'_> {
        DisplayFunction(self)
    }

    /// Sets an absolute source location for the given instruction.
    ///
    /// If no base source location has been set yet, records it at the same time.
    pub fn set_srcloc(&mut self, inst: Inst, srcloc: SourceLoc) {
        let base = self.params.ensure_base_srcloc(srcloc);
        self.stencil.srclocs[inst] = RelSourceLoc::from_base_offset(base, srcloc);
    }

    /// Returns an absolute source location for the given instruction.
    pub fn srcloc(&self, inst: Inst) -> SourceLoc {
        let base = self.params.base_srcloc();
        self.stencil.srclocs[inst].expand(base)
    }

    /// Declare a user-defined external function import, to be referenced in `ExtFuncData::User` later.
    pub fn declare_imported_user_function(
        &mut self,
        name: UserExternalName,
    ) -> UserExternalNameRef {
        self.params.ensure_user_func_name(name)
    }

    /// Declare an external function import.
    pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef {
        self.stencil.dfg.ext_funcs.push(data)
    }
}

/// Wrapper type capable of displaying a `Function`.
pub struct DisplayFunction<'a>(&'a Function);

impl<'a> fmt::Display for DisplayFunction<'a> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write_function(fmt, self.0)
    }
}

impl fmt::Display for Function {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write_function(fmt, self)
    }
}

impl fmt::Debug for Function {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write_function(fmt, self)
    }
}