1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
//! Definitions for registers, operands, etc. Provides a thin
//! interface over the register allocator so that we can more easily
//! swap it out or shim it when necessary.
use alloc::{string::String, vec::Vec};
use core::{fmt::Debug, hash::Hash};
use regalloc2::{
Allocation, Operand, OperandConstraint, OperandKind, OperandPos, PReg, PRegSet, VReg,
};
#[cfg(feature = "enable-serde")]
use serde_derive::{Deserialize, Serialize};
/// The first 192 vregs (64 int, 64 float, 64 vec) are "pinned" to
/// physical registers: this means that they are always constrained to
/// the corresponding register at all use/mod/def sites.
///
/// Arbitrary vregs can also be constrained to physical registers at
/// particular use/def/mod sites, and this is preferable; but pinned
/// vregs allow us to migrate code that has been written using
/// RealRegs directly.
const PINNED_VREGS: usize = 192;
/// Convert a `VReg` to its pinned `PReg`, if any.
pub fn pinned_vreg_to_preg(vreg: VReg) -> Option<PReg> {
if vreg.vreg() < PINNED_VREGS {
Some(PReg::from_index(vreg.vreg()))
} else {
None
}
}
/// Give the first available vreg for generated code (i.e., after all
/// pinned vregs).
pub fn first_user_vreg_index() -> usize {
// This is just the constant defined above, but we keep the
// constant private and expose only this helper function with the
// specific name in order to ensure other parts of the code don't
// open-code and depend on the index-space scheme.
PINNED_VREGS
}
/// A register named in an instruction. This register can be either a
/// virtual register or a fixed physical register. It does not have
/// any constraints applied to it: those can be added later in
/// `MachInst::get_operands()` when the `Reg`s are converted to
/// `Operand`s.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Reg(VReg);
impl Reg {
/// Get the physical register (`RealReg`), if this register is
/// one.
pub fn to_real_reg(self) -> Option<RealReg> {
if pinned_vreg_to_preg(self.0).is_some() {
Some(RealReg(self.0))
} else {
None
}
}
/// Get the virtual (non-physical) register, if this register is
/// one.
pub fn to_virtual_reg(self) -> Option<VirtualReg> {
if pinned_vreg_to_preg(self.0).is_none() {
Some(VirtualReg(self.0))
} else {
None
}
}
/// Get the class of this register.
pub fn class(self) -> RegClass {
self.0.class()
}
/// Is this a real (physical) reg?
pub fn is_real(self) -> bool {
self.to_real_reg().is_some()
}
/// Is this a virtual reg?
pub fn is_virtual(self) -> bool {
self.to_virtual_reg().is_some()
}
}
impl std::fmt::Debug for Reg {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if let Some(rreg) = self.to_real_reg() {
let preg: PReg = rreg.into();
write!(f, "{}", preg)
} else if let Some(vreg) = self.to_virtual_reg() {
let vreg: VReg = vreg.into();
write!(f, "{}", vreg)
} else {
unreachable!()
}
}
}
/// A real (physical) register. This corresponds to one of the target
/// ISA's named registers and can be used as an instruction operand.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct RealReg(VReg);
impl RealReg {
/// Get the class of this register.
pub fn class(self) -> RegClass {
self.0.class()
}
/// The physical register number.
pub fn hw_enc(self) -> u8 {
PReg::from(self).hw_enc() as u8
}
}
impl std::fmt::Debug for RealReg {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
Reg::from(*self).fmt(f)
}
}
/// A virtual register. This can be allocated into a real (physical)
/// register of the appropriate register class, but which one is not
/// specified. Virtual registers are used when generating `MachInst`s,
/// before register allocation occurs, in order to allow us to name as
/// many register-carried values as necessary.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct VirtualReg(VReg);
impl VirtualReg {
/// Get the class of this register.
pub fn class(self) -> RegClass {
self.0.class()
}
pub fn index(self) -> usize {
self.0.vreg()
}
}
impl std::fmt::Debug for VirtualReg {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
Reg::from(*self).fmt(f)
}
}
/// A type wrapper that indicates a register type is writable. The
/// underlying register can be extracted, and the type wrapper can be
/// built using an arbitrary register. Hence, this type-level wrapper
/// is not strictly a guarantee. However, "casting" to a writable
/// register is an explicit operation for which we can
/// audit. Ordinarily, internal APIs in the compiler backend should
/// take a `Writable<Reg>` whenever the register is written, and the
/// usual, frictionless way to get one of these is to allocate a new
/// temporary.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Writable<T: Clone + Copy + Debug + PartialEq + Eq + PartialOrd + Ord + Hash> {
reg: T,
}
impl<T: Clone + Copy + Debug + PartialEq + Eq + PartialOrd + Ord + Hash> Writable<T> {
/// Explicitly construct a `Writable<T>` from a `T`. As noted in
/// the documentation for `Writable`, this is not hidden or
/// disallowed from the outside; anyone can perform the "cast";
/// but it is explicit so that we can audit the use sites.
pub fn from_reg(reg: T) -> Writable<T> {
Writable { reg }
}
/// Get the underlying register, which can be read.
pub fn to_reg(self) -> T {
self.reg
}
/// Map the underlying register to another value or type.
pub fn map<U, F>(self, f: F) -> Writable<U>
where
U: Clone + Copy + Debug + PartialEq + Eq + PartialOrd + Ord + Hash,
F: Fn(T) -> U,
{
Writable { reg: f(self.reg) }
}
}
// Conversions between regalloc2 types (VReg) and our types
// (VirtualReg, RealReg, Reg).
impl std::convert::From<regalloc2::VReg> for Reg {
fn from(vreg: regalloc2::VReg) -> Reg {
Reg(vreg)
}
}
impl std::convert::From<regalloc2::VReg> for VirtualReg {
fn from(vreg: regalloc2::VReg) -> VirtualReg {
debug_assert!(pinned_vreg_to_preg(vreg).is_none());
VirtualReg(vreg)
}
}
impl std::convert::From<regalloc2::VReg> for RealReg {
fn from(vreg: regalloc2::VReg) -> RealReg {
debug_assert!(pinned_vreg_to_preg(vreg).is_some());
RealReg(vreg)
}
}
impl std::convert::From<Reg> for regalloc2::VReg {
/// Extract the underlying `regalloc2::VReg`. Note that physical
/// registers also map to particular (special) VRegs, so this
/// method can be used either on virtual or physical `Reg`s.
fn from(reg: Reg) -> regalloc2::VReg {
reg.0
}
}
impl std::convert::From<&Reg> for regalloc2::VReg {
fn from(reg: &Reg) -> regalloc2::VReg {
reg.0
}
}
impl std::convert::From<VirtualReg> for regalloc2::VReg {
fn from(reg: VirtualReg) -> regalloc2::VReg {
reg.0
}
}
impl std::convert::From<RealReg> for regalloc2::VReg {
fn from(reg: RealReg) -> regalloc2::VReg {
reg.0
}
}
impl std::convert::From<RealReg> for regalloc2::PReg {
fn from(reg: RealReg) -> regalloc2::PReg {
PReg::from_index(reg.0.vreg())
}
}
impl std::convert::From<regalloc2::PReg> for RealReg {
fn from(preg: regalloc2::PReg) -> RealReg {
RealReg(VReg::new(preg.index(), preg.class()))
}
}
impl std::convert::From<regalloc2::PReg> for Reg {
fn from(preg: regalloc2::PReg) -> Reg {
Reg(VReg::new(preg.index(), preg.class()))
}
}
impl std::convert::From<RealReg> for Reg {
fn from(reg: RealReg) -> Reg {
Reg(reg.0)
}
}
impl std::convert::From<VirtualReg> for Reg {
fn from(reg: VirtualReg) -> Reg {
Reg(reg.0)
}
}
/// A spill slot.
pub type SpillSlot = regalloc2::SpillSlot;
/// A register class. Each register in the ISA has one class, and the
/// classes are disjoint. Most modern ISAs will have just two classes:
/// the integer/general-purpose registers (GPRs), and the float/vector
/// registers (typically used for both).
///
/// Note that unlike some other compiler backend/register allocator
/// designs, we do not allow for overlapping classes, i.e. registers
/// that belong to more than one class, because doing so makes the
/// allocation problem significantly more complex. Instead, when a
/// register can be addressed under different names for different
/// sizes (for example), the backend author should pick classes that
/// denote some fundamental allocation unit that encompasses the whole
/// register. For example, always allocate 128-bit vector registers
/// `v0`..`vN`, even though `f32` and `f64` values may use only the
/// low 32/64 bits of those registers and name them differently.
pub type RegClass = regalloc2::RegClass;
/// An OperandCollector is a wrapper around a Vec of Operands
/// (flattened array for a whole sequence of instructions) that
/// gathers operands from a single instruction and provides the range
/// in the flattened array.
#[derive(Debug)]
pub struct OperandCollector<'a, F: Fn(VReg) -> VReg> {
operands: &'a mut Vec<Operand>,
operands_start: usize,
clobbers: PRegSet,
/// The subset of physical registers that are allocatable.
allocatable: PRegSet,
renamer: F,
}
impl<'a, F: Fn(VReg) -> VReg> OperandCollector<'a, F> {
/// Start gathering operands into one flattened operand array.
pub fn new(operands: &'a mut Vec<Operand>, allocatable: PRegSet, renamer: F) -> Self {
let operands_start = operands.len();
Self {
operands,
operands_start,
clobbers: PRegSet::default(),
allocatable,
renamer,
}
}
/// Returns true if no reuse_def constraints have been added.
pub fn no_reuse_def(&self) -> bool {
!self.operands[self.operands_start..]
.iter()
.any(|operand| match operand.constraint() {
OperandConstraint::Reuse(_) => true,
_ => false,
})
}
fn is_allocatable_preg(&self, reg: PReg) -> bool {
self.allocatable.contains(reg)
}
/// Add an operand.
fn add_operand(&mut self, operand: Operand) {
let vreg = (self.renamer)(operand.vreg());
let operand = Operand::new(vreg, operand.constraint(), operand.kind(), operand.pos());
self.operands.push(operand);
}
/// Finish the operand collection and return the tuple giving the
/// range of indices in the flattened operand array, and the
/// clobber set.
pub fn finish(self) -> ((u32, u32), PRegSet) {
let start = self.operands_start as u32;
let end = self.operands.len() as u32;
((start, end), self.clobbers)
}
/// Add a use of a fixed, nonallocatable physical register.
pub fn reg_fixed_nonallocatable(&mut self, preg: PReg) {
debug_assert!(!self.is_allocatable_preg(preg));
self.add_operand(Operand::fixed_nonallocatable(preg))
}
/// Add a register use, at the start of the instruction (`Before`
/// position).
pub fn reg_use(&mut self, reg: Reg) {
if let Some(rreg) = reg.to_real_reg() {
self.reg_fixed_nonallocatable(rreg.into());
} else {
debug_assert!(reg.is_virtual());
self.add_operand(Operand::reg_use(reg.into()));
}
}
/// Add a register use, at the end of the instruction (`After` position).
pub fn reg_late_use(&mut self, reg: Reg) {
if let Some(rreg) = reg.to_real_reg() {
self.reg_fixed_nonallocatable(rreg.into());
} else {
debug_assert!(reg.is_virtual());
self.add_operand(Operand::reg_use_at_end(reg.into()));
}
}
/// Add multiple register uses.
pub fn reg_uses(&mut self, regs: &[Reg]) {
for ® in regs {
self.reg_use(reg);
}
}
/// Add a register def, at the end of the instruction (`After`
/// position). Use only when this def will be written after all
/// uses are read.
pub fn reg_def(&mut self, reg: Writable<Reg>) {
if let Some(rreg) = reg.to_reg().to_real_reg() {
self.reg_fixed_nonallocatable(rreg.into());
} else {
debug_assert!(reg.to_reg().is_virtual());
self.add_operand(Operand::reg_def(reg.to_reg().into()));
}
}
/// Add multiple register defs.
pub fn reg_defs(&mut self, regs: &[Writable<Reg>]) {
for ® in regs {
self.reg_def(reg);
}
}
/// Add a register "early def", which logically occurs at the
/// beginning of the instruction, alongside all uses. Use this
/// when the def may be written before all uses are read; the
/// regalloc will ensure that it does not overwrite any uses.
pub fn reg_early_def(&mut self, reg: Writable<Reg>) {
if let Some(rreg) = reg.to_reg().to_real_reg() {
self.reg_fixed_nonallocatable(rreg.into());
} else {
debug_assert!(reg.to_reg().is_virtual());
self.add_operand(Operand::reg_def_at_start(reg.to_reg().into()));
}
}
/// Add a register "fixed use", which ties a vreg to a particular
/// RealReg at the end of the instruction.
pub fn reg_fixed_late_use(&mut self, reg: Reg, rreg: Reg) {
debug_assert!(reg.is_virtual());
let rreg = rreg.to_real_reg().expect("fixed reg is not a RealReg");
debug_assert!(self.is_allocatable_preg(rreg.into()));
self.add_operand(Operand::new(
reg.into(),
OperandConstraint::FixedReg(rreg.into()),
OperandKind::Use,
OperandPos::Late,
));
}
/// Add a register "fixed use", which ties a vreg to a particular
/// RealReg at this point.
pub fn reg_fixed_use(&mut self, reg: Reg, rreg: Reg) {
debug_assert!(reg.is_virtual());
let rreg = rreg.to_real_reg().expect("fixed reg is not a RealReg");
debug_assert!(self.is_allocatable_preg(rreg.into()));
self.add_operand(Operand::reg_fixed_use(reg.into(), rreg.into()));
}
/// Add a register "fixed def", which ties a vreg to a particular
/// RealReg at this point.
pub fn reg_fixed_def(&mut self, reg: Writable<Reg>, rreg: Reg) {
debug_assert!(reg.to_reg().is_virtual());
let rreg = rreg.to_real_reg().expect("fixed reg is not a RealReg");
debug_assert!(
self.is_allocatable_preg(rreg.into()),
"{rreg:?} is not allocatable"
);
self.add_operand(Operand::reg_fixed_def(reg.to_reg().into(), rreg.into()));
}
/// Add a register def that reuses an earlier use-operand's
/// allocation. The index of that earlier operand (relative to the
/// current instruction's start of operands) must be known.
pub fn reg_reuse_def(&mut self, reg: Writable<Reg>, idx: usize) {
if let Some(rreg) = reg.to_reg().to_real_reg() {
// In some cases we see real register arguments to a reg_reuse_def
// constraint. We assume the creator knows what they're doing
// here, though we do also require that the real register be a
// fixed-nonallocatable register.
self.reg_fixed_nonallocatable(rreg.into());
} else {
// The operand we're reusing must not be fixed-nonallocatable, as
// that would imply that the register has been allocated to a
// virtual register.
self.add_operand(Operand::reg_reuse_def(reg.to_reg().into(), idx));
}
}
/// Add a register clobber set. This is a set of registers that
/// are written by the instruction, so must be reserved (not used)
/// for the whole instruction, but are not used afterward.
pub fn reg_clobbers(&mut self, regs: PRegSet) {
self.clobbers.union_from(regs);
}
}
/// Pretty-print part of a disassembly, with knowledge of
/// operand/instruction size, and optionally with regalloc
/// results. This can be used, for example, to print either `rax` or
/// `eax` for the register by those names on x86-64, depending on a
/// 64- or 32-bit context.
pub trait PrettyPrint {
fn pretty_print(&self, size_bytes: u8, allocs: &mut AllocationConsumer<'_>) -> String;
fn pretty_print_default(&self) -> String {
self.pretty_print(0, &mut AllocationConsumer::new(&[]))
}
}
/// A consumer of an (optional) list of Allocations along with Regs
/// that provides RealRegs where available.
///
/// This is meant to be used during code emission or
/// pretty-printing. In at least the latter case, regalloc results may
/// or may not be available, so we may end up printing either vregs or
/// rregs. Even pre-regalloc, though, some registers may be RealRegs
/// that were provided when the instruction was created.
///
/// This struct should be used in a specific way: when matching on an
/// instruction, provide it the Regs in the same order as they were
/// provided to the OperandCollector.
#[derive(Clone)]
pub struct AllocationConsumer<'a> {
allocs: std::slice::Iter<'a, Allocation>,
}
impl<'a> AllocationConsumer<'a> {
pub fn new(allocs: &'a [Allocation]) -> Self {
Self {
allocs: allocs.iter(),
}
}
pub fn next_fixed_nonallocatable(&mut self, preg: PReg) {
let alloc = self.allocs.next();
let alloc = alloc.map(|alloc| {
Reg::from(
alloc
.as_reg()
.expect("Should not have gotten a stack allocation"),
)
});
match alloc {
Some(alloc) => {
assert_eq!(preg, alloc.to_real_reg().unwrap().into());
}
None => {}
}
}
pub fn next(&mut self, pre_regalloc_reg: Reg) -> Reg {
let alloc = self.allocs.next();
let alloc = alloc.map(|alloc| {
Reg::from(
alloc
.as_reg()
.expect("Should not have gotten a stack allocation"),
)
});
match (pre_regalloc_reg.to_real_reg(), alloc) {
(Some(rreg), None) => rreg.into(),
(Some(rreg), Some(alloc)) => {
debug_assert_eq!(Reg::from(rreg), alloc);
alloc
}
(None, Some(alloc)) => alloc,
_ => pre_regalloc_reg,
}
}
pub fn next_writable(&mut self, pre_regalloc_reg: Writable<Reg>) -> Writable<Reg> {
Writable::from_reg(self.next(pre_regalloc_reg.to_reg()))
}
}
impl<'a> std::default::Default for AllocationConsumer<'a> {
fn default() -> Self {
Self { allocs: [].iter() }
}
}