cranelift_codegen/ir/
pcc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
//! Proof-carrying code. We attach "facts" to values and then check
//! that they remain true after compilation.
//!
//! A few key design principle of this approach are:
//!
//! - The producer of the IR provides the axioms. All "ground truth",
//!   such as what memory is accessible -- is meant to come by way of
//!   facts on the function arguments and global values. In some
//!   sense, all we are doing here is validating the "internal
//!   consistency" of the facts that are provided on values, and the
//!   actions performed on those values.
//!
//! - We do not derive and forward-propagate facts eagerly. Rather,
//!   the producer needs to provide breadcrumbs -- a "proof witness"
//!   of sorts -- to allow the checking to complete. That means that
//!   as an address is computed, or pointer chains are dereferenced,
//!   each intermediate value will likely have some fact attached.
//!
//!   This does create more verbose IR, but a significant positive
//!   benefit is that it avoids unnecessary work: we do not build up a
//!   knowledge base that effectively encodes the integer ranges of
//!   many or most values in the program. Rather, we only check
//!   specifically the memory-access sequences. In practice, each such
//!   sequence is likely to be a carefully-controlled sequence of IR
//!   operations from, e.g., a sandboxing compiler (such as
//!   `cranelift-wasm`) so adding annotations here to communicate
//!   intent (ranges, bounds-checks, and the like) is no problem.
//!
//! Facts are attached to SSA values in CLIF, and are maintained
//! through optimizations and through lowering. They are thus also
//! present on VRegs in the VCode. In theory, facts could be checked
//! at either level, though in practice it is most useful to check
//! them at the VCode level if the goal is an end-to-end verification
//! of certain properties (e.g., memory sandboxing).
//!
//! Checking facts entails visiting each instruction that defines a
//! value with a fact, and checking the result's fact against the
//! facts on arguments and the operand. For VCode, this is
//! fundamentally a question of the target ISA's semantics, so we call
//! into the `LowerBackend` for this. Note that during checking there
//! is also limited forward propagation / inference, but only within
//! an instruction: for example, an addressing mode commonly can
//! include an addition, multiplication/shift, or extend operation,
//! and there is no way to attach facts to the intermediate values
//! "inside" the instruction, so instead the backend can use
//! `FactContext::add()` and friends to forward-propagate facts.
//!
//! TODO:
//!
//! Deployment:
//! - Add to fuzzing
//! - Turn on during wasm spec-tests
//!
//! More checks:
//! - Check that facts on `vmctx` GVs are subsumed by the actual facts
//!   on the vmctx arg in block0 (function arg).
//!
//! Generality:
//! - facts on outputs (in func signature)?
//! - Implement checking at the CLIF level as well.
//! - Check instructions that can trap as well?
//!
//! Nicer errors:
//! - attach instruction index or some other identifier to errors
//!
//! Text format cleanup:
//! - make the bitwidth on `max` facts optional in the CLIF text
//!   format?
//! - make offset in `mem` fact optional in the text format?
//!
//! Bikeshed colors (syntax):
//! - Put fact bang-annotations after types?
//!   `v0: i64 ! fact(..)` vs. `v0 ! fact(..): i64`

use crate::ir;
use crate::ir::types::*;
use crate::isa::TargetIsa;
use crate::machinst::{BlockIndex, LowerBackend, VCode};
use crate::trace;
use regalloc2::Function as _;
use std::fmt;

#[cfg(feature = "enable-serde")]
use serde_derive::{Deserialize, Serialize};

/// The result of checking proof-carrying-code facts.
pub type PccResult<T> = std::result::Result<T, PccError>;

/// An error or inconsistency discovered when checking proof-carrying
/// code.
#[derive(Debug, Clone)]
pub enum PccError {
    /// An operation wraps around, invalidating the stated value
    /// range.
    Overflow,
    /// An input to an operator that produces a fact-annotated value
    /// does not have a fact describing it, and one is needed.
    MissingFact,
    /// A derivation of an output fact is unsupported (incorrect or
    /// not derivable).
    UnsupportedFact,
    /// A block parameter claims a fact that one of its predecessors
    /// does not support.
    UnsupportedBlockparam,
    /// A memory access is out of bounds.
    OutOfBounds,
    /// Proof-carrying-code checking is not implemented for a
    /// particular compiler backend.
    UnimplementedBackend,
    /// Proof-carrying-code checking is not implemented for a
    /// particular instruction that instruction-selection chose. This
    /// is an internal compiler error.
    UnimplementedInst,
    /// Access to an invalid or undefined field offset in a struct.
    InvalidFieldOffset,
    /// Access to a field via the wrong type.
    BadFieldType,
    /// Store to a read-only field.
    WriteToReadOnlyField,
    /// Store of data to a field with a fact that does not subsume the
    /// field's fact.
    InvalidStoredFact,
}

/// A fact on a value.
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum Fact {
    /// A bitslice of a value (up to a bitwidth) is within the given
    /// integer range.
    ///
    /// The slicing behavior is needed because this fact can describe
    /// both an SSA `Value`, whose entire value is well-defined, and a
    /// `VReg` in VCode, whose bits beyond the type stored in that
    /// register are don't-care (undefined).
    Range {
        /// The bitwidth of bits we care about, from the LSB upward.
        bit_width: u16,
        /// The minimum value that the bitslice can take
        /// (inclusive). The range is unsigned: the specified bits of
        /// the actual value will be greater than or equal to this
        /// value, as evaluated by an unsigned integer comparison.
        min: u64,
        /// The maximum value that the bitslice can take
        /// (inclusive). The range is unsigned: the specified bits of
        /// the actual value will be less than or equal to this value,
        /// as evaluated by an unsigned integer comparison.
        max: u64,
    },

    /// A value bounded by a global value.
    ///
    /// The range is in `(min_GV + min_offset)..(max_GV +
    /// max_offset)`, inclusive on the lower and upper bound.
    DynamicRange {
        /// The bitwidth of bits we care about, from the LSB upward.
        bit_width: u16,
        /// The lower bound, inclusive.
        min: Expr,
        /// The upper bound, inclusive.
        max: Expr,
    },

    /// A pointer to a memory type.
    Mem {
        /// The memory type.
        ty: ir::MemoryType,
        /// The minimum offset into the memory type, inclusive.
        min_offset: u64,
        /// The maximum offset into the memory type, inclusive.
        max_offset: u64,
        /// This pointer can also be null.
        nullable: bool,
    },

    /// A pointer to a memory type, dynamically bounded. The pointer
    /// is within `(GV_min+offset_min)..(GV_max+offset_max)`
    /// (inclusive on both ends) in the memory type.
    DynamicMem {
        /// The memory type.
        ty: ir::MemoryType,
        /// The lower bound, inclusive.
        min: Expr,
        /// The upper bound, inclusive.
        max: Expr,
        /// This pointer can also be null.
        nullable: bool,
    },

    /// A definition of a value to be used as a symbol in
    /// BaseExprs. There can only be one of these per value number.
    ///
    /// Note that this differs from a `DynamicRange` specifying that
    /// some value in the program is the same as `value`. A `def(v1)`
    /// fact is propagated to machine code and serves as a source of
    /// truth: the value or location labeled with this fact *defines*
    /// what `v1` is, and any `dynamic_range(64, v1, v1)`-labeled
    /// values elsewhere are claiming to be equal to this value.
    ///
    /// This is necessary because we don't propagate SSA value labels
    /// down to machine code otherwise; so when referring symbolically
    /// to addresses and expressions derived from addresses, we need
    /// to introduce the symbol first.
    Def {
        /// The SSA value this value defines.
        value: ir::Value,
    },

    /// A comparison result between two dynamic values with a
    /// comparison of a certain kind.
    Compare {
        /// The kind of comparison.
        kind: ir::condcodes::IntCC,
        /// The left-hand side of the comparison.
        lhs: Expr,
        /// The right-hand side of the comparison.
        rhs: Expr,
    },

    /// A "conflict fact": this fact results from merging two other
    /// facts, and it can never be satisfied -- checking any value
    /// against this fact will fail.
    Conflict,
}

/// A bound expression.
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Expr {
    /// The dynamic (base) part.
    pub base: BaseExpr,
    /// The static (offset) part.
    pub offset: i64,
}

/// The base part of a bound expression.
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum BaseExpr {
    /// No dynamic part (i.e., zero).
    None,
    /// A global value.
    GlobalValue(ir::GlobalValue),
    /// An SSA Value as a symbolic value. This can be referenced in
    /// facts even after we've lowered out of SSA: it becomes simply
    /// some symbolic value.
    Value(ir::Value),
    /// Top of the address space. This is "saturating": the offset
    /// doesn't matter.
    Max,
}

impl BaseExpr {
    /// Is one base less than or equal to another? (We can't always
    /// know; in such cases, returns `false`.)
    fn le(lhs: &BaseExpr, rhs: &BaseExpr) -> bool {
        // (i) reflexivity; (ii) 0 <= x for all (unsigned) x; (iii) x <= max for all x.
        lhs == rhs || *lhs == BaseExpr::None || *rhs == BaseExpr::Max
    }

    /// Compute some BaseExpr that will be less than or equal to both
    /// inputs. This is a generalization of `min` (but looser).
    fn min(lhs: &BaseExpr, rhs: &BaseExpr) -> BaseExpr {
        if lhs == rhs {
            lhs.clone()
        } else if *lhs == BaseExpr::Max {
            rhs.clone()
        } else if *rhs == BaseExpr::Max {
            lhs.clone()
        } else {
            BaseExpr::None // zero is <= x for all (unsigned) x.
        }
    }

    /// Compute some BaseExpr that will be greater than or equal to
    /// both inputs.
    fn max(lhs: &BaseExpr, rhs: &BaseExpr) -> BaseExpr {
        if lhs == rhs {
            lhs.clone()
        } else if *lhs == BaseExpr::None {
            rhs.clone()
        } else if *rhs == BaseExpr::None {
            lhs.clone()
        } else {
            BaseExpr::Max
        }
    }
}

impl Expr {
    /// Constant value.
    pub fn constant(offset: i64) -> Self {
        Expr {
            base: BaseExpr::None,
            offset,
        }
    }

    /// The value of an SSA value.
    pub fn value(value: ir::Value) -> Self {
        Expr {
            base: BaseExpr::Value(value),
            offset: 0,
        }
    }

    /// The value of a global value.
    pub fn global_value(gv: ir::GlobalValue) -> Self {
        Expr {
            base: BaseExpr::GlobalValue(gv),
            offset: 0,
        }
    }

    /// Is one expression definitely less than or equal to another?
    /// (We can't always know; in such cases, returns `false`.)
    fn le(lhs: &Expr, rhs: &Expr) -> bool {
        if rhs.base == BaseExpr::Max {
            true
        } else {
            BaseExpr::le(&lhs.base, &rhs.base) && lhs.offset <= rhs.offset
        }
    }

    /// Generalization of `min`: compute some Expr that is less than
    /// or equal to both inputs.
    fn min(lhs: &Expr, rhs: &Expr) -> Expr {
        if lhs.base == BaseExpr::None && lhs.offset == 0 {
            lhs.clone()
        } else if rhs.base == BaseExpr::None && rhs.offset == 0 {
            rhs.clone()
        } else {
            Expr {
                base: BaseExpr::min(&lhs.base, &rhs.base),
                offset: std::cmp::min(lhs.offset, rhs.offset),
            }
        }
    }

    /// Generalization of `max`: compute some Expr that is greater
    /// than or equal to both inputs.
    fn max(lhs: &Expr, rhs: &Expr) -> Expr {
        if lhs.base == BaseExpr::None && lhs.offset == 0 {
            rhs.clone()
        } else if rhs.base == BaseExpr::None && rhs.offset == 0 {
            lhs.clone()
        } else {
            Expr {
                base: BaseExpr::max(&lhs.base, &rhs.base),
                offset: std::cmp::max(lhs.offset, rhs.offset),
            }
        }
    }

    /// Add one expression to another.
    fn add(lhs: &Expr, rhs: &Expr) -> Option<Expr> {
        if lhs.base == rhs.base {
            Some(Expr {
                base: lhs.base.clone(),
                offset: lhs.offset.checked_add(rhs.offset)?,
            })
        } else if lhs.base == BaseExpr::None {
            Some(Expr {
                base: rhs.base.clone(),
                offset: lhs.offset.checked_add(rhs.offset)?,
            })
        } else if rhs.base == BaseExpr::None {
            Some(Expr {
                base: lhs.base.clone(),
                offset: lhs.offset.checked_add(rhs.offset)?,
            })
        } else {
            Some(Expr {
                base: BaseExpr::Max,
                offset: 0,
            })
        }
    }

    /// Add a static offset to an expression.
    pub fn offset(lhs: &Expr, rhs: i64) -> Option<Expr> {
        let offset = lhs.offset.checked_add(rhs)?;
        Some(Expr {
            base: lhs.base.clone(),
            offset,
        })
    }

    /// Is this Expr a BaseExpr with no offset? Return it if so.
    pub fn without_offset(&self) -> Option<&BaseExpr> {
        if self.offset == 0 {
            Some(&self.base)
        } else {
            None
        }
    }
}

impl fmt::Display for BaseExpr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            BaseExpr::None => Ok(()),
            BaseExpr::Max => write!(f, "max"),
            BaseExpr::GlobalValue(gv) => write!(f, "{gv}"),
            BaseExpr::Value(value) => write!(f, "{value}"),
        }
    }
}

impl BaseExpr {
    /// Does this dynamic_expression take an offset?
    pub fn is_some(&self) -> bool {
        match self {
            BaseExpr::None => false,
            _ => true,
        }
    }
}

impl fmt::Display for Expr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.base)?;
        match self.offset {
            offset if offset > 0 && self.base.is_some() => write!(f, "+{offset:#x}"),
            offset if offset > 0 => write!(f, "{offset:#x}"),
            offset if offset < 0 => {
                let negative_offset = -i128::from(offset); // upcast to support i64::MIN.
                write!(f, "-{negative_offset:#x}")
            }
            0 if self.base.is_some() => Ok(()),
            0 => write!(f, "0"),
            _ => unreachable!(),
        }
    }
}

impl fmt::Display for Fact {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Fact::Range {
                bit_width,
                min,
                max,
            } => write!(f, "range({bit_width}, {min:#x}, {max:#x})"),
            Fact::DynamicRange {
                bit_width,
                min,
                max,
            } => {
                write!(f, "dynamic_range({bit_width}, {min}, {max})")
            }
            Fact::Mem {
                ty,
                min_offset,
                max_offset,
                nullable,
            } => {
                let nullable_flag = if *nullable { ", nullable" } else { "" };
                write!(
                    f,
                    "mem({ty}, {min_offset:#x}, {max_offset:#x}{nullable_flag})"
                )
            }
            Fact::DynamicMem {
                ty,
                min,
                max,
                nullable,
            } => {
                let nullable_flag = if *nullable { ", nullable" } else { "" };
                write!(f, "dynamic_mem({ty}, {min}, {max}{nullable_flag})")
            }
            Fact::Def { value } => write!(f, "def({value})"),
            Fact::Compare { kind, lhs, rhs } => {
                write!(f, "compare({kind}, {lhs}, {rhs})")
            }
            Fact::Conflict => write!(f, "conflict"),
        }
    }
}

impl Fact {
    /// Create a range fact that specifies a single known constant value.
    pub fn constant(bit_width: u16, value: u64) -> Self {
        debug_assert!(value <= max_value_for_width(bit_width));
        // `min` and `max` are inclusive, so this specifies a range of
        // exactly one value.
        Fact::Range {
            bit_width,
            min: value,
            max: value,
        }
    }

    /// Create a dynamic range fact that points to the base of a dynamic memory.
    pub fn dynamic_base_ptr(ty: ir::MemoryType) -> Self {
        Fact::DynamicMem {
            ty,
            min: Expr::constant(0),
            max: Expr::constant(0),
            nullable: false,
        }
    }

    /// Create a fact that specifies the value is exactly an SSA value.
    ///
    /// Note that this differs from a `def` fact: it is not *defining*
    /// a symbol to have the value that this fact is attached to;
    /// rather it is claiming that this value is the same as whatever
    /// that symbol is. (In other words, the def should be elsewhere,
    /// and we are tying ourselves to it.)
    pub fn value(bit_width: u16, value: ir::Value) -> Self {
        Fact::DynamicRange {
            bit_width,
            min: Expr::value(value),
            max: Expr::value(value),
        }
    }

    /// Create a fact that specifies the value is exactly an SSA value plus some offset.
    pub fn value_offset(bit_width: u16, value: ir::Value, offset: i64) -> Self {
        Fact::DynamicRange {
            bit_width,
            min: Expr::offset(&Expr::value(value), offset).unwrap(),
            max: Expr::offset(&Expr::value(value), offset).unwrap(),
        }
    }

    /// Create a fact that specifies the value is exactly the value of a GV.
    pub fn global_value(bit_width: u16, gv: ir::GlobalValue) -> Self {
        Fact::DynamicRange {
            bit_width,
            min: Expr::global_value(gv),
            max: Expr::global_value(gv),
        }
    }

    /// Create a fact that specifies the value is exactly the value of a GV plus some offset.
    pub fn global_value_offset(bit_width: u16, gv: ir::GlobalValue, offset: i64) -> Self {
        Fact::DynamicRange {
            bit_width,
            min: Expr::offset(&Expr::global_value(gv), offset).unwrap(),
            max: Expr::offset(&Expr::global_value(gv), offset).unwrap(),
        }
    }

    /// Create a range fact that specifies the maximum range for a
    /// value of the given bit-width.
    pub const fn max_range_for_width(bit_width: u16) -> Self {
        match bit_width {
            bit_width if bit_width < 64 => Fact::Range {
                bit_width,
                min: 0,
                max: (1u64 << bit_width) - 1,
            },
            64 => Fact::Range {
                bit_width: 64,
                min: 0,
                max: u64::MAX,
            },
            _ => panic!("bit width too large!"),
        }
    }

    /// Create a range fact that specifies the maximum range for a
    /// value of the given bit-width, zero-extended into a wider
    /// width.
    pub const fn max_range_for_width_extended(from_width: u16, to_width: u16) -> Self {
        debug_assert!(from_width <= to_width);
        match from_width {
            from_width if from_width < 64 => Fact::Range {
                bit_width: to_width,
                min: 0,
                max: (1u64 << from_width) - 1,
            },
            64 => Fact::Range {
                bit_width: to_width,
                min: 0,
                max: u64::MAX,
            },
            _ => panic!("bit width too large!"),
        }
    }

    /// Try to infer a minimal fact for a value of the given IR type.
    pub fn infer_from_type(ty: ir::Type) -> Option<&'static Self> {
        static FACTS: [Fact; 4] = [
            Fact::max_range_for_width(8),
            Fact::max_range_for_width(16),
            Fact::max_range_for_width(32),
            Fact::max_range_for_width(64),
        ];
        match ty {
            I8 => Some(&FACTS[0]),
            I16 => Some(&FACTS[1]),
            I32 => Some(&FACTS[2]),
            I64 => Some(&FACTS[3]),
            _ => None,
        }
    }

    /// Does this fact "propagate" automatically, i.e., cause
    /// instructions that process it to infer their own output facts?
    /// Not all facts propagate automatically; otherwise, verification
    /// would be much slower.
    pub fn propagates(&self) -> bool {
        match self {
            Fact::Mem { .. } => true,
            _ => false,
        }
    }

    /// Is this a constant value of the given bitwidth? Return it as a
    /// `Some(value)` if so.
    pub fn as_const(&self, bits: u16) -> Option<u64> {
        match self {
            Fact::Range {
                bit_width,
                min,
                max,
            } if *bit_width == bits && min == max => Some(*min),
            _ => None,
        }
    }

    /// Is this fact a single-value range with a symbolic Expr?
    pub fn as_symbol(&self) -> Option<&Expr> {
        match self {
            Fact::DynamicRange { min, max, .. } if min == max => Some(min),
            _ => None,
        }
    }

    /// Merge two facts. We take the *intersection*: that is, we know
    /// both facts to be true, so we can intersect ranges. (This
    /// differs from the usual static analysis approach, where we are
    /// merging multiple possibilities into a generalized / widened
    /// fact. We want to narrow here.)
    pub fn intersect(a: &Fact, b: &Fact) -> Fact {
        match (a, b) {
            (
                Fact::Range {
                    bit_width: bw_lhs,
                    min: min_lhs,
                    max: max_lhs,
                },
                Fact::Range {
                    bit_width: bw_rhs,
                    min: min_rhs,
                    max: max_rhs,
                },
            ) if bw_lhs == bw_rhs && max_lhs >= min_rhs && max_rhs >= min_lhs => Fact::Range {
                bit_width: *bw_lhs,
                min: std::cmp::max(*min_lhs, *min_rhs),
                max: std::cmp::min(*max_lhs, *max_rhs),
            },

            (
                Fact::DynamicRange {
                    bit_width: bw_lhs,
                    min: min_lhs,
                    max: max_lhs,
                },
                Fact::DynamicRange {
                    bit_width: bw_rhs,
                    min: min_rhs,
                    max: max_rhs,
                },
            ) if bw_lhs == bw_rhs && Expr::le(min_rhs, max_lhs) && Expr::le(min_lhs, max_rhs) => {
                Fact::DynamicRange {
                    bit_width: *bw_lhs,
                    min: Expr::max(min_lhs, min_rhs),
                    max: Expr::min(max_lhs, max_rhs),
                }
            }

            (
                Fact::Mem {
                    ty: ty_lhs,
                    min_offset: min_offset_lhs,
                    max_offset: max_offset_lhs,
                    nullable: nullable_lhs,
                },
                Fact::Mem {
                    ty: ty_rhs,
                    min_offset: min_offset_rhs,
                    max_offset: max_offset_rhs,
                    nullable: nullable_rhs,
                },
            ) if ty_lhs == ty_rhs
                && max_offset_lhs >= min_offset_rhs
                && max_offset_rhs >= min_offset_lhs =>
            {
                Fact::Mem {
                    ty: *ty_lhs,
                    min_offset: std::cmp::max(*min_offset_lhs, *min_offset_rhs),
                    max_offset: std::cmp::min(*max_offset_lhs, *max_offset_rhs),
                    nullable: *nullable_lhs && *nullable_rhs,
                }
            }

            (
                Fact::DynamicMem {
                    ty: ty_lhs,
                    min: min_lhs,
                    max: max_lhs,
                    nullable: null_lhs,
                },
                Fact::DynamicMem {
                    ty: ty_rhs,
                    min: min_rhs,
                    max: max_rhs,
                    nullable: null_rhs,
                },
            ) if ty_lhs == ty_rhs && Expr::le(min_rhs, max_lhs) && Expr::le(min_lhs, max_rhs) => {
                Fact::DynamicMem {
                    ty: *ty_lhs,
                    min: Expr::max(min_lhs, min_rhs),
                    max: Expr::min(max_lhs, max_rhs),
                    nullable: *null_lhs && *null_rhs,
                }
            }

            _ => Fact::Conflict,
        }
    }
}

macro_rules! ensure {
    ( $condition:expr, $err:tt $(,)? ) => {
        if !$condition {
            return Err(PccError::$err);
        }
    };
}

macro_rules! bail {
    ( $err:tt ) => {{
        return Err(PccError::$err);
    }};
}

/// The two kinds of inequalities: "strict" (`<`, `>`) and "loose"
/// (`<=`, `>=`), the latter of which admit equality.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum InequalityKind {
    /// Strict inequality: {less,greater}-than.
    Strict,
    /// Loose inequality: {less,greater}-than-or-equal.
    Loose,
}

/// A "context" in which we can evaluate and derive facts. This
/// context carries environment/global properties, such as the machine
/// pointer width.
pub struct FactContext<'a> {
    function: &'a ir::Function,
    pointer_width: u16,
}

impl<'a> FactContext<'a> {
    /// Create a new "fact context" in which to evaluate facts.
    pub fn new(function: &'a ir::Function, pointer_width: u16) -> Self {
        FactContext {
            function,
            pointer_width,
        }
    }

    /// Computes whether `lhs` "subsumes" (implies) `rhs`.
    pub fn subsumes(&self, lhs: &Fact, rhs: &Fact) -> bool {
        match (lhs, rhs) {
            // Reflexivity.
            (l, r) if l == r => true,

            (
                Fact::Range {
                    bit_width: bw_lhs,
                    min: min_lhs,
                    max: max_lhs,
                },
                Fact::Range {
                    bit_width: bw_rhs,
                    min: min_rhs,
                    max: max_rhs,
                },
            ) => {
                // If the bitwidths we're claiming facts about are the
                // same, or the left-hand-side makes a claim about a
                // wider bitwidth, and if the right-hand-side range is
                // larger than the left-hand-side range, than the LHS
                // subsumes the RHS.
                //
                // In other words, we can always expand the claimed
                // possible value range.
                bw_lhs >= bw_rhs && max_lhs <= max_rhs && min_lhs >= min_rhs
            }

            (
                Fact::DynamicRange {
                    bit_width: bw_lhs,
                    min: min_lhs,
                    max: max_lhs,
                },
                Fact::DynamicRange {
                    bit_width: bw_rhs,
                    min: min_rhs,
                    max: max_rhs,
                },
            ) => {
                // Nearly same as above, but with dynamic-expression
                // comparisons. Note that we require equal bitwidths
                // here: unlike in the static case, we don't have
                // fixed values for min and max, so we can't lean on
                // the well-formedness requirements of the static
                // ranges fitting within the bit-width max.
                bw_lhs == bw_rhs && Expr::le(max_lhs, max_rhs) && Expr::le(min_rhs, min_lhs)
            }

            (
                Fact::Mem {
                    ty: ty_lhs,
                    min_offset: min_offset_lhs,
                    max_offset: max_offset_lhs,
                    nullable: nullable_lhs,
                },
                Fact::Mem {
                    ty: ty_rhs,
                    min_offset: min_offset_rhs,
                    max_offset: max_offset_rhs,
                    nullable: nullable_rhs,
                },
            ) => {
                ty_lhs == ty_rhs
                    && max_offset_lhs <= max_offset_rhs
                    && min_offset_lhs >= min_offset_rhs
                    && (*nullable_lhs || !*nullable_rhs)
            }

            (
                Fact::DynamicMem {
                    ty: ty_lhs,
                    min: min_lhs,
                    max: max_lhs,
                    nullable: nullable_lhs,
                },
                Fact::DynamicMem {
                    ty: ty_rhs,
                    min: min_rhs,
                    max: max_rhs,
                    nullable: nullable_rhs,
                },
            ) => {
                ty_lhs == ty_rhs
                    && Expr::le(max_lhs, max_rhs)
                    && Expr::le(min_rhs, min_lhs)
                    && (*nullable_lhs || !*nullable_rhs)
            }

            // Constant zero subsumes nullable DynamicMem pointers.
            (
                Fact::Range {
                    bit_width,
                    min: 0,
                    max: 0,
                },
                Fact::DynamicMem { nullable: true, .. },
            ) if *bit_width == self.pointer_width => true,

            // Any fact subsumes a Def, because the Def makes no
            // claims about the actual value (it ties a symbol to that
            // value, but the value is fed to the symbol, not the
            // other way around).
            (_, Fact::Def { .. }) => true,

            _ => false,
        }
    }

    /// Computes whether the optional fact `lhs` subsumes (implies)
    /// the optional fact `lhs`. A `None` never subsumes any fact, and
    /// is always subsumed by any fact at all (or no fact).
    pub fn subsumes_fact_optionals(&self, lhs: Option<&Fact>, rhs: Option<&Fact>) -> bool {
        match (lhs, rhs) {
            (None, None) => true,
            (Some(_), None) => true,
            (None, Some(_)) => false,
            (Some(lhs), Some(rhs)) => self.subsumes(lhs, rhs),
        }
    }

    /// Computes whatever fact can be known about the sum of two
    /// values with attached facts. The add is performed to the given
    /// bit-width. Note that this is distinct from the machine or
    /// pointer width: e.g., many 64-bit machines can still do 32-bit
    /// adds that wrap at 2^32.
    pub fn add(&self, lhs: &Fact, rhs: &Fact, add_width: u16) -> Option<Fact> {
        let result = match (lhs, rhs) {
            (
                Fact::Range {
                    bit_width: bw_lhs,
                    min: min_lhs,
                    max: max_lhs,
                },
                Fact::Range {
                    bit_width: bw_rhs,
                    min: min_rhs,
                    max: max_rhs,
                },
            ) if bw_lhs == bw_rhs && add_width >= *bw_lhs => {
                let computed_min = min_lhs.checked_add(*min_rhs)?;
                let computed_max = max_lhs.checked_add(*max_rhs)?;
                let computed_max = std::cmp::min(max_value_for_width(add_width), computed_max);
                Some(Fact::Range {
                    bit_width: *bw_lhs,
                    min: computed_min,
                    max: computed_max,
                })
            }

            (
                Fact::Range {
                    bit_width: bw_max,
                    min,
                    max,
                },
                Fact::Mem {
                    ty,
                    min_offset,
                    max_offset,
                    nullable,
                },
            )
            | (
                Fact::Mem {
                    ty,
                    min_offset,
                    max_offset,
                    nullable,
                },
                Fact::Range {
                    bit_width: bw_max,
                    min,
                    max,
                },
            ) if *bw_max >= self.pointer_width
                && add_width >= *bw_max
                && (!*nullable || *max == 0) =>
            {
                let min_offset = min_offset.checked_add(*min)?;
                let max_offset = max_offset.checked_add(*max)?;
                Some(Fact::Mem {
                    ty: *ty,
                    min_offset,
                    max_offset,
                    nullable: false,
                })
            }

            (
                Fact::Range {
                    bit_width: bw_static,
                    min: min_static,
                    max: max_static,
                },
                Fact::DynamicRange {
                    bit_width: bw_dynamic,
                    min: ref min_dynamic,
                    max: ref max_dynamic,
                },
            )
            | (
                Fact::DynamicRange {
                    bit_width: bw_dynamic,
                    min: ref min_dynamic,
                    max: ref max_dynamic,
                },
                Fact::Range {
                    bit_width: bw_static,
                    min: min_static,
                    max: max_static,
                },
            ) if bw_static == bw_dynamic => {
                let min = Expr::offset(min_dynamic, i64::try_from(*min_static).ok()?)?;
                let max = Expr::offset(max_dynamic, i64::try_from(*max_static).ok()?)?;
                Some(Fact::DynamicRange {
                    bit_width: *bw_dynamic,
                    min,
                    max,
                })
            }

            (
                Fact::DynamicMem {
                    ty,
                    min: min_mem,
                    max: max_mem,
                    nullable: false,
                },
                Fact::DynamicRange {
                    bit_width,
                    min: min_range,
                    max: max_range,
                },
            )
            | (
                Fact::DynamicRange {
                    bit_width,
                    min: min_range,
                    max: max_range,
                },
                Fact::DynamicMem {
                    ty,
                    min: min_mem,
                    max: max_mem,
                    nullable: false,
                },
            ) if *bit_width == self.pointer_width => {
                let min = Expr::add(min_mem, min_range)?;
                let max = Expr::add(max_mem, max_range)?;
                Some(Fact::DynamicMem {
                    ty: *ty,
                    min,
                    max,
                    nullable: false,
                })
            }

            (
                Fact::Mem {
                    ty,
                    min_offset,
                    max_offset,
                    nullable: false,
                },
                Fact::DynamicRange {
                    bit_width,
                    min: min_range,
                    max: max_range,
                },
            )
            | (
                Fact::DynamicRange {
                    bit_width,
                    min: min_range,
                    max: max_range,
                },
                Fact::Mem {
                    ty,
                    min_offset,
                    max_offset,
                    nullable: false,
                },
            ) if *bit_width == self.pointer_width => {
                let min = Expr::offset(min_range, i64::try_from(*min_offset).ok()?)?;
                let max = Expr::offset(max_range, i64::try_from(*max_offset).ok()?)?;
                Some(Fact::DynamicMem {
                    ty: *ty,
                    min,
                    max,
                    nullable: false,
                })
            }

            (
                Fact::Range {
                    bit_width: bw_static,
                    min: min_static,
                    max: max_static,
                },
                Fact::DynamicMem {
                    ty,
                    min: ref min_dynamic,
                    max: ref max_dynamic,
                    nullable,
                },
            )
            | (
                Fact::DynamicMem {
                    ty,
                    min: ref min_dynamic,
                    max: ref max_dynamic,
                    nullable,
                },
                Fact::Range {
                    bit_width: bw_static,
                    min: min_static,
                    max: max_static,
                },
            ) if *bw_static == self.pointer_width && (!*nullable || *max_static == 0) => {
                let min = Expr::offset(min_dynamic, i64::try_from(*min_static).ok()?)?;
                let max = Expr::offset(max_dynamic, i64::try_from(*max_static).ok()?)?;
                Some(Fact::DynamicMem {
                    ty: *ty,
                    min,
                    max,
                    nullable: false,
                })
            }

            _ => None,
        };

        trace!("add: {lhs:?} + {rhs:?} -> {result:?}");
        result
    }

    /// Computes the `uextend` of a value with the given facts.
    pub fn uextend(&self, fact: &Fact, from_width: u16, to_width: u16) -> Option<Fact> {
        if from_width == to_width {
            return Some(fact.clone());
        }

        let result = match fact {
            // If the claim is already for a same-or-wider value and the min
            // and max are within range of the narrower value, we can
            // claim the same range.
            Fact::Range {
                bit_width,
                min,
                max,
            } if *bit_width >= from_width
                && *min <= max_value_for_width(from_width)
                && *max <= max_value_for_width(from_width) =>
            {
                Some(Fact::Range {
                    bit_width: to_width,
                    min: *min,
                    max: *max,
                })
            }

            // If the claim is a dynamic range for the from-width, we
            // can extend to the to-width.
            Fact::DynamicRange {
                bit_width,
                min,
                max,
            } if *bit_width == from_width => Some(Fact::DynamicRange {
                bit_width: to_width,
                min: min.clone(),
                max: max.clone(),
            }),

            // If the claim is a definition of a value, we can say
            // that the output has a range of exactly that value.
            Fact::Def { value } => Some(Fact::value(to_width, *value)),

            // Otherwise, we can at least claim that the value is
            // within the range of `from_width`.
            Fact::Range { .. } => Some(Fact::max_range_for_width_extended(from_width, to_width)),

            _ => None,
        };
        trace!("uextend: fact {fact:?} from {from_width} to {to_width} -> {result:?}");
        result
    }

    /// Computes the `sextend` of a value with the given facts.
    pub fn sextend(&self, fact: &Fact, from_width: u16, to_width: u16) -> Option<Fact> {
        match fact {
            // If we have a defined value in bits 0..bit_width, and
            // the MSB w.r.t. `from_width` is *not* set, then we can
            // do the same as `uextend`.
            Fact::Range {
                bit_width,
                // We can ignore `min`: it is always <= max in
                // unsigned terms, and we check max's LSB below.
                min: _,
                max,
            } if *bit_width == from_width && (*max & (1 << (*bit_width - 1)) == 0) => {
                self.uextend(fact, from_width, to_width)
            }
            _ => None,
        }
    }

    /// Computes the bit-truncation of a value with the given fact.
    pub fn truncate(&self, fact: &Fact, from_width: u16, to_width: u16) -> Option<Fact> {
        if from_width == to_width {
            return Some(fact.clone());
        }

        trace!(
            "truncate: fact {:?} from {} to {}",
            fact,
            from_width,
            to_width
        );

        match fact {
            Fact::Range {
                bit_width,
                min,
                max,
            } if *bit_width == from_width => {
                let max_val = (1u64 << to_width) - 1;
                if *min <= max_val && *max <= max_val {
                    Some(Fact::Range {
                        bit_width: to_width,
                        min: *min,
                        max: *max,
                    })
                } else {
                    Some(Fact::Range {
                        bit_width: to_width,
                        min: 0,
                        max: max_val,
                    })
                }
            }
            _ => None,
        }
    }

    /// Scales a value with a fact by a known constant.
    pub fn scale(&self, fact: &Fact, width: u16, factor: u32) -> Option<Fact> {
        let result = match fact {
            x if factor == 1 => Some(x.clone()),

            Fact::Range {
                bit_width,
                min,
                max,
            } if *bit_width == width => {
                let min = min.checked_mul(u64::from(factor))?;
                let max = max.checked_mul(u64::from(factor))?;
                if *bit_width < 64 && max > max_value_for_width(width) {
                    return None;
                }
                Some(Fact::Range {
                    bit_width: *bit_width,
                    min,
                    max,
                })
            }
            _ => None,
        };
        trace!("scale: {fact:?} * {factor} at width {width} -> {result:?}");
        result
    }

    /// Left-shifts a value with a fact by a known constant.
    pub fn shl(&self, fact: &Fact, width: u16, amount: u16) -> Option<Fact> {
        if amount >= 32 {
            return None;
        }
        let factor: u32 = 1 << amount;
        self.scale(fact, width, factor)
    }

    /// Offsets a value with a fact by a known amount.
    pub fn offset(&self, fact: &Fact, width: u16, offset: i64) -> Option<Fact> {
        if offset == 0 {
            return Some(fact.clone());
        }

        let compute_offset = |base: u64| -> Option<u64> {
            if offset >= 0 {
                base.checked_add(u64::try_from(offset).unwrap())
            } else {
                base.checked_sub(u64::try_from(-offset).unwrap())
            }
        };

        let result = match fact {
            Fact::Range {
                bit_width,
                min,
                max,
            } if *bit_width == width => {
                let min = compute_offset(*min)?;
                let max = compute_offset(*max)?;
                Some(Fact::Range {
                    bit_width: *bit_width,
                    min,
                    max,
                })
            }
            Fact::DynamicRange {
                bit_width,
                min,
                max,
            } if *bit_width == width => {
                let min = Expr::offset(min, offset)?;
                let max = Expr::offset(max, offset)?;
                Some(Fact::DynamicRange {
                    bit_width: *bit_width,
                    min,
                    max,
                })
            }
            Fact::Mem {
                ty,
                min_offset: mem_min_offset,
                max_offset: mem_max_offset,
                nullable: false,
            } => {
                let min_offset = compute_offset(*mem_min_offset)?;
                let max_offset = compute_offset(*mem_max_offset)?;
                Some(Fact::Mem {
                    ty: *ty,
                    min_offset,
                    max_offset,
                    nullable: false,
                })
            }
            Fact::DynamicMem {
                ty,
                min,
                max,
                nullable: false,
            } => {
                let min = Expr::offset(min, offset)?;
                let max = Expr::offset(max, offset)?;
                Some(Fact::DynamicMem {
                    ty: *ty,
                    min,
                    max,
                    nullable: false,
                })
            }
            _ => None,
        };
        trace!("offset: {fact:?} + {offset} in width {width} -> {result:?}");
        result
    }

    /// Check that accessing memory via a pointer with this fact, with
    /// a memory access of the given size, is valid.
    ///
    /// If valid, returns the memory type and offset into that type
    /// that this address accesses, if known, or `None` if the range
    /// doesn't constrain the access to exactly one location.
    fn check_address(&self, fact: &Fact, size: u32) -> PccResult<Option<(ir::MemoryType, u64)>> {
        trace!("check_address: fact {:?} size {}", fact, size);
        match fact {
            Fact::Mem {
                ty,
                min_offset,
                max_offset,
                nullable: _,
            } => {
                let end_offset: u64 = max_offset
                    .checked_add(u64::from(size))
                    .ok_or(PccError::Overflow)?;
                match &self.function.memory_types[*ty] {
                    ir::MemoryTypeData::Struct { size, .. }
                    | ir::MemoryTypeData::Memory { size } => {
                        ensure!(end_offset <= *size, OutOfBounds)
                    }
                    ir::MemoryTypeData::DynamicMemory { .. } => bail!(OutOfBounds),
                    ir::MemoryTypeData::Empty => bail!(OutOfBounds),
                }
                let specific_ty_and_offset = if min_offset == max_offset {
                    Some((*ty, *min_offset))
                } else {
                    None
                };
                Ok(specific_ty_and_offset)
            }
            Fact::DynamicMem {
                ty,
                min: _,
                max:
                    Expr {
                        base: BaseExpr::GlobalValue(max_gv),
                        offset: max_offset,
                    },
                nullable: _,
            } => match &self.function.memory_types[*ty] {
                ir::MemoryTypeData::DynamicMemory {
                    gv,
                    size: mem_static_size,
                } if gv == max_gv => {
                    let end_offset = max_offset
                        .checked_add(i64::from(size))
                        .ok_or(PccError::Overflow)?;
                    let mem_static_size =
                        i64::try_from(*mem_static_size).map_err(|_| PccError::Overflow)?;
                    ensure!(end_offset <= mem_static_size, OutOfBounds);
                    Ok(None)
                }
                _ => bail!(OutOfBounds),
            },
            _ => bail!(OutOfBounds),
        }
    }

    /// Get the access struct field, if any, by a pointer with the
    /// given fact and an access of the given type.
    pub fn struct_field<'b>(
        &'b self,
        fact: &Fact,
        access_ty: ir::Type,
    ) -> PccResult<Option<&'b ir::MemoryTypeField>> {
        let (ty, offset) = match self.check_address(fact, access_ty.bytes())? {
            Some((ty, offset)) => (ty, offset),
            None => return Ok(None),
        };

        if let ir::MemoryTypeData::Struct { fields, .. } = &self.function.memory_types[ty] {
            let field = fields
                .iter()
                .find(|field| field.offset == offset)
                .ok_or(PccError::InvalidFieldOffset)?;
            if field.ty != access_ty {
                bail!(BadFieldType);
            }
            Ok(Some(field))
        } else {
            // Access to valid memory, but not a struct: no facts can be attached to the result.
            Ok(None)
        }
    }

    /// Check a load, and determine what fact, if any, the result of the load might have.
    pub fn load<'b>(&'b self, fact: &Fact, access_ty: ir::Type) -> PccResult<Option<&'b Fact>> {
        Ok(self
            .struct_field(fact, access_ty)?
            .and_then(|field| field.fact()))
    }

    /// Check a store.
    pub fn store(
        &self,
        fact: &Fact,
        access_ty: ir::Type,
        data_fact: Option<&Fact>,
    ) -> PccResult<()> {
        if let Some(field) = self.struct_field(fact, access_ty)? {
            // If it's a read-only field, disallow.
            if field.readonly {
                bail!(WriteToReadOnlyField);
            }
            // Check that the fact on the stored data subsumes the field's fact.
            if !self.subsumes_fact_optionals(data_fact, field.fact()) {
                bail!(InvalidStoredFact);
            }
        }
        Ok(())
    }

    /// Apply a known inequality to rewrite dynamic bounds using transitivity, if possible.
    ///
    /// Given that `lhs >= rhs` (if not `strict`) or `lhs > rhs` (if
    /// `strict`), update `fact`.
    pub fn apply_inequality(
        &self,
        fact: &Fact,
        lhs: &Fact,
        rhs: &Fact,
        kind: InequalityKind,
    ) -> Fact {
        let result = match (
            lhs.as_symbol(),
            lhs.as_const(self.pointer_width)
                .and_then(|k| i64::try_from(k).ok()),
            rhs.as_symbol(),
            fact,
        ) {
            (
                Some(lhs),
                None,
                Some(rhs),
                Fact::DynamicMem {
                    ty,
                    min,
                    max,
                    nullable,
                },
            ) if rhs.base == max.base => {
                let strict_offset = match kind {
                    InequalityKind::Strict => 1,
                    InequalityKind::Loose => 0,
                };
                if let Some(offset) = max
                    .offset
                    .checked_add(lhs.offset)
                    .and_then(|x| x.checked_sub(rhs.offset))
                    .and_then(|x| x.checked_sub(strict_offset))
                {
                    let new_max = Expr {
                        base: lhs.base.clone(),
                        offset,
                    };
                    Fact::DynamicMem {
                        ty: *ty,
                        min: min.clone(),
                        max: new_max,
                        nullable: *nullable,
                    }
                } else {
                    fact.clone()
                }
            }

            (
                None,
                Some(lhs_const),
                Some(rhs),
                Fact::DynamicMem {
                    ty,
                    min: _,
                    max,
                    nullable,
                },
            ) if rhs.base == max.base => {
                let strict_offset = match kind {
                    InequalityKind::Strict => 1,
                    InequalityKind::Loose => 0,
                };
                if let Some(offset) = max
                    .offset
                    .checked_add(lhs_const)
                    .and_then(|x| x.checked_sub(rhs.offset))
                    .and_then(|x| x.checked_sub(strict_offset))
                {
                    Fact::Mem {
                        ty: *ty,
                        min_offset: 0,
                        max_offset: u64::try_from(offset).unwrap_or(0),
                        nullable: *nullable,
                    }
                } else {
                    fact.clone()
                }
            }

            _ => fact.clone(),
        };
        trace!("apply_inequality({fact:?}, {lhs:?}, {rhs:?}, {kind:?} -> {result:?}");
        result
    }

    /// Compute the union of two facts, if possible.
    pub fn union(&self, lhs: &Fact, rhs: &Fact) -> Option<Fact> {
        let result = match (lhs, rhs) {
            (lhs, rhs) if lhs == rhs => Some(lhs.clone()),

            (
                Fact::DynamicMem {
                    ty: ty_lhs,
                    min: min_lhs,
                    max: max_lhs,
                    nullable: nullable_lhs,
                },
                Fact::DynamicMem {
                    ty: ty_rhs,
                    min: min_rhs,
                    max: max_rhs,
                    nullable: nullable_rhs,
                },
            ) if ty_lhs == ty_rhs => Some(Fact::DynamicMem {
                ty: *ty_lhs,
                min: Expr::min(min_lhs, min_rhs),
                max: Expr::max(max_lhs, max_rhs),
                nullable: *nullable_lhs || *nullable_rhs,
            }),

            (
                Fact::Range {
                    bit_width: bw_const,
                    min: 0,
                    max: 0,
                },
                Fact::DynamicMem {
                    ty,
                    min,
                    max,
                    nullable: _,
                },
            )
            | (
                Fact::DynamicMem {
                    ty,
                    min,
                    max,
                    nullable: _,
                },
                Fact::Range {
                    bit_width: bw_const,
                    min: 0,
                    max: 0,
                },
            ) if *bw_const == self.pointer_width => Some(Fact::DynamicMem {
                ty: *ty,
                min: min.clone(),
                max: max.clone(),
                nullable: true,
            }),

            (
                Fact::Range {
                    bit_width: bw_const,
                    min: 0,
                    max: 0,
                },
                Fact::Mem {
                    ty,
                    min_offset,
                    max_offset,
                    nullable: _,
                },
            )
            | (
                Fact::Mem {
                    ty,
                    min_offset,
                    max_offset,
                    nullable: _,
                },
                Fact::Range {
                    bit_width: bw_const,
                    min: 0,
                    max: 0,
                },
            ) if *bw_const == self.pointer_width => Some(Fact::Mem {
                ty: *ty,
                min_offset: *min_offset,
                max_offset: *max_offset,
                nullable: true,
            }),

            _ => None,
        };
        trace!("union({lhs:?}, {rhs:?}) -> {result:?}");
        result
    }
}

fn max_value_for_width(bits: u16) -> u64 {
    assert!(bits <= 64);
    if bits == 64 {
        u64::MAX
    } else {
        (1u64 << bits) - 1
    }
}

/// Top-level entry point after compilation: this checks the facts in
/// VCode.
pub fn check_vcode_facts<B: LowerBackend + TargetIsa>(
    f: &ir::Function,
    vcode: &mut VCode<B::MInst>,
    backend: &B,
) -> PccResult<()> {
    let ctx = FactContext::new(f, backend.triple().pointer_width().unwrap().bits().into());

    // Check that individual instructions are valid according to input
    // facts, and support the stated output facts.
    for block in 0..vcode.num_blocks() {
        let block = BlockIndex::new(block);
        let mut flow_state = B::FactFlowState::default();
        for inst in vcode.block_insns(block).iter() {
            // Check any output facts on this inst.
            if let Err(e) = backend.check_fact(&ctx, vcode, inst, &mut flow_state) {
                log::info!("Error checking instruction: {:?}", vcode[inst]);
                return Err(e);
            }

            // If this is a branch, check that all block arguments subsume
            // the assumed facts on the blockparams of successors.
            if vcode.is_branch(inst) {
                for (succ_idx, succ) in vcode.block_succs(block).iter().enumerate() {
                    for (arg, param) in vcode
                        .branch_blockparams(block, inst, succ_idx)
                        .iter()
                        .zip(vcode.block_params(*succ).iter())
                    {
                        let arg_fact = vcode.vreg_fact(*arg);
                        let param_fact = vcode.vreg_fact(*param);
                        if !ctx.subsumes_fact_optionals(arg_fact, param_fact) {
                            return Err(PccError::UnsupportedBlockparam);
                        }
                    }
                }
            }
        }
    }
    Ok(())
}