cranelift_codegen/ir/
types.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
//! Common types for the Cranelift code generator.

use core::fmt::{self, Debug, Display, Formatter};
use cranelift_codegen_shared::constants;
#[cfg(feature = "enable-serde")]
use serde_derive::{Deserialize, Serialize};
use target_lexicon::{PointerWidth, Triple};

/// The type of an SSA value.
///
/// The `INVALID` type isn't a real type, and is used as a placeholder in the IR where a type
/// field is present put no type is needed, such as the controlling type variable for a
/// non-polymorphic instruction.
///
/// Basic integer types: `I8`, `I16`, `I32`, `I64`, and `I128`. These types are sign-agnostic.
///
/// Basic floating point types: `F16`, `F32`, `F64`, and `F128`. IEEE half, single, double, and quadruple precision.
///
/// SIMD vector types have power-of-two lanes, up to 256. Lanes can be any int/float type.
///
/// Note that this is encoded in a `u16` currently for extensibility,
/// but allows only 14 bits to be used due to some bitpacking tricks
/// in the CLIF data structures.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Type(u16);

/// Not a valid type. Can't be loaded or stored. Can't be part of a SIMD vector.
pub const INVALID: Type = Type(0);

// Include code generated by `cranelift-codegen/meta/gen_types.rs`. This file contains constant
// definitions for all the scalar types as well as common vector types for 64, 128, 256, and
// 512-bit SIMD vectors.
include!(concat!(env!("OUT_DIR"), "/types.rs"));

impl Type {
    /// Get the lane type of this SIMD vector type.
    ///
    /// A lane type is the same as a SIMD vector type with one lane, so it returns itself.
    pub fn lane_type(self) -> Self {
        if self.0 < constants::VECTOR_BASE {
            self
        } else {
            Self(constants::LANE_BASE | (self.0 & 0x0f))
        }
    }

    /// The type transformation that returns the lane type of a type variable; it is just a
    /// renaming of lane_type() to be used in context where we think in terms of type variable
    /// transformations.
    pub fn lane_of(self) -> Self {
        self.lane_type()
    }

    /// Get log_2 of the number of bits in a lane.
    pub fn log2_lane_bits(self) -> u32 {
        match self.lane_type() {
            I8 => 3,
            I16 | F16 => 4,
            I32 | F32 | R32 => 5,
            I64 | F64 | R64 => 6,
            I128 | F128 => 7,
            _ => 0,
        }
    }

    /// Get the number of bits in a lane.
    pub fn lane_bits(self) -> u32 {
        match self.lane_type() {
            I8 => 8,
            I16 | F16 => 16,
            I32 | F32 | R32 => 32,
            I64 | F64 | R64 => 64,
            I128 | F128 => 128,
            _ => 0,
        }
    }

    /// Get the (minimum, maximum) values represented by each lane in the type.
    /// Note that these are returned as unsigned 'bit patterns'.
    pub fn bounds(self, signed: bool) -> (u128, u128) {
        if signed {
            match self.lane_type() {
                I8 => (i8::MIN as u128, i8::MAX as u128),
                I16 => (i16::MIN as u128, i16::MAX as u128),
                I32 => (i32::MIN as u128, i32::MAX as u128),
                I64 => (i64::MIN as u128, i64::MAX as u128),
                I128 => (i128::MIN as u128, i128::MAX as u128),
                _ => unimplemented!(),
            }
        } else {
            match self.lane_type() {
                I8 => (u8::MIN as u128, u8::MAX as u128),
                I16 => (u16::MIN as u128, u16::MAX as u128),
                I32 => (u32::MIN as u128, u32::MAX as u128),
                I64 => (u64::MIN as u128, u64::MAX as u128),
                I128 => (u128::MIN, u128::MAX),
                _ => unimplemented!(),
            }
        }
    }

    /// Get an integer type with the requested number of bits.
    ///
    /// For the same thing but in *bytes*, use [`Self::int_with_byte_size`].
    pub fn int(bits: u16) -> Option<Self> {
        match bits {
            8 => Some(I8),
            16 => Some(I16),
            32 => Some(I32),
            64 => Some(I64),
            128 => Some(I128),
            _ => None,
        }
    }

    /// Get an integer type with the requested number of bytes.
    ///
    /// For the same thing but in *bits*, use [`Self::int`].
    pub fn int_with_byte_size(bytes: u16) -> Option<Self> {
        Self::int(bytes.checked_mul(8)?)
    }

    /// Get a type with the same number of lanes as `self`, but using `lane` as the lane type.
    fn replace_lanes(self, lane: Self) -> Self {
        debug_assert!(lane.is_lane() && !self.is_special());
        Self((lane.0 & 0x0f) | (self.0 & 0xf0))
    }

    /// Get a type with the same number of lanes as this type, but with the lanes replaced by
    /// booleans of the same size.
    ///
    /// Lane types are treated as vectors with one lane, so they are converted to the multi-bit
    /// boolean types.
    pub fn as_truthy_pedantic(self) -> Self {
        // Replace the low 4 bits with the boolean version, preserve the high 4 bits.
        self.replace_lanes(match self.lane_type() {
            I8 => I8,
            I16 | F16 => I16,
            I32 | F32 => I32,
            I64 | F64 => I64,
            R32 | R64 => panic!("Reference types are not truthy"),
            I128 | F128 => I128,
            _ => I8,
        })
    }

    /// Get the type of a comparison result for the given type. For vectors this will be a vector
    /// with the same number of lanes and integer elements, and for scalar types this will be `i8`,
    /// which is the result type of comparisons.
    pub fn as_truthy(self) -> Self {
        if !self.is_vector() {
            I8
        } else {
            self.as_truthy_pedantic()
        }
    }

    /// Get a type with the same number of lanes as this type, but with the lanes replaced by
    /// integers of the same size.
    pub fn as_int(self) -> Self {
        self.replace_lanes(match self.lane_type() {
            I8 => I8,
            I16 | F16 => I16,
            I32 | F32 | R32 => I32,
            I64 | F64 | R64 => I64,
            I128 | F128 => I128,
            _ => unimplemented!(),
        })
    }

    /// Get a type with the same number of lanes as this type, but with lanes that are half the
    /// number of bits.
    pub fn half_width(self) -> Option<Self> {
        Some(self.replace_lanes(match self.lane_type() {
            I16 => I8,
            I32 => I16,
            I64 => I32,
            I128 => I64,
            F32 => F16,
            F64 => F32,
            F128 => F64,
            _ => return None,
        }))
    }

    /// Get a type with the same number of lanes as this type, but with lanes that are twice the
    /// number of bits.
    pub fn double_width(self) -> Option<Self> {
        Some(self.replace_lanes(match self.lane_type() {
            I8 => I16,
            I16 => I32,
            I32 => I64,
            I64 => I128,
            F16 => F32,
            F32 => F64,
            F64 => F128,
            _ => return None,
        }))
    }

    /// Is this the INVALID type?
    pub fn is_invalid(self) -> bool {
        self == INVALID
    }

    /// Is this a special type?
    pub fn is_special(self) -> bool {
        self.0 < constants::LANE_BASE
    }

    /// Is this a lane type?
    ///
    /// This is a scalar type that can also appear as the lane type of a SIMD vector.
    pub fn is_lane(self) -> bool {
        constants::LANE_BASE <= self.0 && self.0 < constants::VECTOR_BASE
    }

    /// Is this a SIMD vector type?
    ///
    /// A vector type has 2 or more lanes.
    pub fn is_vector(self) -> bool {
        self.0 >= constants::VECTOR_BASE && !self.is_dynamic_vector()
    }

    /// Is this a SIMD vector type with a runtime number of lanes?
    pub fn is_dynamic_vector(self) -> bool {
        self.0 >= constants::DYNAMIC_VECTOR_BASE
    }

    /// Is this a scalar integer type?
    pub fn is_int(self) -> bool {
        match self {
            I8 | I16 | I32 | I64 | I128 => true,
            _ => false,
        }
    }

    /// Is this a scalar floating point type?
    pub fn is_float(self) -> bool {
        match self {
            F16 | F32 | F64 | F128 => true,
            _ => false,
        }
    }

    /// Is this a ref type?
    pub fn is_ref(self) -> bool {
        match self {
            R32 | R64 => true,
            _ => false,
        }
    }

    /// Get log_2 of the number of lanes in this SIMD vector type.
    ///
    /// All SIMD types have a lane count that is a power of two and no larger than 256, so this
    /// will be a number in the range 0-8.
    ///
    /// A scalar type is the same as a SIMD vector type with one lane, so it returns 0.
    pub fn log2_lane_count(self) -> u32 {
        if self.is_dynamic_vector() {
            0
        } else {
            (self.0.saturating_sub(constants::LANE_BASE) >> 4) as u32
        }
    }

    /// Get log_2 of the number of lanes in this vector/dynamic type.
    pub fn log2_min_lane_count(self) -> u32 {
        if self.is_dynamic_vector() {
            (self
                .0
                .saturating_sub(constants::VECTOR_BASE + constants::LANE_BASE)
                >> 4) as u32
        } else {
            self.log2_lane_count()
        }
    }

    /// Get the number of lanes in this SIMD vector type.
    ///
    /// A scalar type is the same as a SIMD vector type with one lane, so it returns 1.
    pub fn lane_count(self) -> u32 {
        if self.is_dynamic_vector() {
            0
        } else {
            1 << self.log2_lane_count()
        }
    }

    /// Get the total number of bits used to represent this type.
    pub fn bits(self) -> u32 {
        if self.is_dynamic_vector() {
            0
        } else {
            self.lane_bits() * self.lane_count()
        }
    }

    /// Get the minimum of lanes in this SIMD vector type, this supports both fixed and
    /// dynamic types.
    pub fn min_lane_count(self) -> u32 {
        if self.is_dynamic_vector() {
            1 << self.log2_min_lane_count()
        } else {
            1 << self.log2_lane_count()
        }
    }

    /// Get the minimum number of bits used to represent this type.
    pub fn min_bits(self) -> u32 {
        if self.is_dynamic_vector() {
            self.lane_bits() * self.min_lane_count()
        } else {
            self.bits()
        }
    }

    /// Get the number of bytes used to store this type in memory.
    pub fn bytes(self) -> u32 {
        (self.bits() + 7) / 8
    }

    /// Get a SIMD vector type with `n` times more lanes than this one.
    ///
    /// If this is a scalar type, this produces a SIMD type with this as a lane type and `n` lanes.
    ///
    /// If this is already a SIMD vector type, this produces a SIMD vector type with `n *
    /// self.lane_count()` lanes.
    pub fn by(self, n: u32) -> Option<Self> {
        if self.is_dynamic_vector() {
            return None;
        }
        if self.lane_bits() == 0 || !n.is_power_of_two() {
            return None;
        }
        let log2_lanes: u32 = n.trailing_zeros();
        let new_type = u32::from(self.0) + (log2_lanes << 4);
        if new_type < constants::DYNAMIC_VECTOR_BASE as u32
            && (new_type as u16) < constants::DYNAMIC_VECTOR_BASE
        {
            Some(Self(new_type as u16))
        } else {
            None
        }
    }

    /// Convert a fixed vector type to a dynamic one.
    pub fn vector_to_dynamic(self) -> Option<Self> {
        assert!(self.is_vector());
        if self.bits() > 256 {
            return None;
        }
        let new_ty = self.0 + constants::VECTOR_BASE;
        let ty = Some(Self(new_ty));
        assert!(ty.unwrap().is_dynamic_vector());
        return ty;
    }

    /// Convert a dynamic vector type to a fixed one.
    pub fn dynamic_to_vector(self) -> Option<Self> {
        assert!(self.is_dynamic_vector());
        Some(Self(self.0 - constants::VECTOR_BASE))
    }

    /// Split the lane width in half and double the number of lanes to maintain the same bit-width.
    ///
    /// If this is a scalar type of `n` bits, it produces a SIMD vector type of `(n/2)x2`.
    pub fn split_lanes(self) -> Option<Self> {
        match self.half_width() {
            Some(half_width) => half_width.by(2),
            None => None,
        }
    }

    /// Merge lanes to half the number of lanes and double the lane width to maintain the same
    /// bit-width.
    ///
    /// If this is a scalar type, it will return `None`.
    pub fn merge_lanes(self) -> Option<Self> {
        match self.double_width() {
            Some(double_width) => {
                if double_width.is_vector() && !double_width.is_dynamic_vector() {
                    Some(Self(double_width.0 - 0x10))
                } else {
                    None
                }
            }
            None => None,
        }
    }

    /// Index of this type, for use with hash tables etc.
    pub fn index(self) -> usize {
        usize::from(self.0)
    }

    /// True iff:
    ///
    /// 1. `self.lane_count() == other.lane_count()` and
    /// 2. `self.lane_bits() >= other.lane_bits()`
    pub fn wider_or_equal(self, other: Self) -> bool {
        self.lane_count() == other.lane_count() && self.lane_bits() >= other.lane_bits()
    }

    /// Return the pointer type for the given target triple.
    pub fn triple_pointer_type(triple: &Triple) -> Self {
        match triple.pointer_width() {
            Ok(PointerWidth::U16) => I16,
            Ok(PointerWidth::U32) => I32,
            Ok(PointerWidth::U64) => I64,
            Err(()) => panic!("unable to determine architecture pointer width"),
        }
    }

    /// Gets a bit-level representation of the type. Used only
    /// internally for efficiently storing types.
    pub(crate) fn repr(self) -> u16 {
        self.0
    }

    /// Converts from a bit-level representation of the type back to a
    /// `Type`.
    pub(crate) fn from_repr(bits: u16) -> Type {
        Type(bits)
    }
}

impl Display for Type {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        if self.is_int() {
            write!(f, "i{}", self.lane_bits())
        } else if self.is_float() {
            write!(f, "f{}", self.lane_bits())
        } else if self.is_vector() {
            write!(f, "{}x{}", self.lane_type(), self.lane_count())
        } else if self.is_dynamic_vector() {
            write!(f, "{:?}x{}xN", self.lane_type(), self.min_lane_count())
        } else if self.is_ref() {
            write!(f, "r{}", self.lane_bits())
        } else {
            match *self {
                INVALID => panic!("INVALID encountered"),
                _ => panic!("Unknown Type(0x{:x})", self.0),
            }
        }
    }
}

impl Debug for Type {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        if self.is_int() {
            write!(f, "types::I{}", self.lane_bits())
        } else if self.is_float() {
            write!(f, "types::F{}", self.lane_bits())
        } else if self.is_vector() {
            write!(f, "{:?}X{}", self.lane_type(), self.lane_count())
        } else if self.is_dynamic_vector() {
            write!(f, "{:?}X{}XN", self.lane_type(), self.min_lane_count())
        } else if self.is_ref() {
            write!(f, "types::R{}", self.lane_bits())
        } else {
            match *self {
                INVALID => write!(f, "types::INVALID"),
                _ => write!(f, "Type(0x{:x})", self.0),
            }
        }
    }
}

impl Default for Type {
    fn default() -> Self {
        INVALID
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloc::string::ToString;

    #[test]
    fn basic_scalars() {
        assert_eq!(INVALID, INVALID.lane_type());
        assert_eq!(0, INVALID.bits());
        assert_eq!(I8, I8.lane_type());
        assert_eq!(I16, I16.lane_type());
        assert_eq!(I32, I32.lane_type());
        assert_eq!(I64, I64.lane_type());
        assert_eq!(I128, I128.lane_type());
        assert_eq!(F32, F32.lane_type());
        assert_eq!(F16, F16.lane_type());
        assert_eq!(F64, F64.lane_type());
        assert_eq!(F128, F128.lane_type());
        assert_eq!(I32, I32X4.lane_type());
        assert_eq!(F64, F64X2.lane_type());
        assert_eq!(R32, R32.lane_type());
        assert_eq!(R64, R64.lane_type());

        assert_eq!(INVALID.lane_bits(), 0);
        assert_eq!(I8.lane_bits(), 8);
        assert_eq!(I16.lane_bits(), 16);
        assert_eq!(I32.lane_bits(), 32);
        assert_eq!(I64.lane_bits(), 64);
        assert_eq!(I128.lane_bits(), 128);
        assert_eq!(F16.lane_bits(), 16);
        assert_eq!(F32.lane_bits(), 32);
        assert_eq!(F64.lane_bits(), 64);
        assert_eq!(F128.lane_bits(), 128);
        assert_eq!(R32.lane_bits(), 32);
        assert_eq!(R64.lane_bits(), 64);
    }

    #[test]
    fn typevar_functions() {
        assert_eq!(INVALID.half_width(), None);
        assert_eq!(INVALID.half_width(), None);
        assert_eq!(I8.half_width(), None);
        assert_eq!(I16.half_width(), Some(I8));
        assert_eq!(I32.half_width(), Some(I16));
        assert_eq!(I32X4.half_width(), Some(I16X4));
        assert_eq!(I64.half_width(), Some(I32));
        assert_eq!(I128.half_width(), Some(I64));
        assert_eq!(F16.half_width(), None);
        assert_eq!(F32.half_width(), Some(F16));
        assert_eq!(F64.half_width(), Some(F32));
        assert_eq!(F128.half_width(), Some(F64));

        assert_eq!(INVALID.double_width(), None);
        assert_eq!(I8.double_width(), Some(I16));
        assert_eq!(I16.double_width(), Some(I32));
        assert_eq!(I32.double_width(), Some(I64));
        assert_eq!(I32X4.double_width(), Some(I64X4));
        assert_eq!(I64.double_width(), Some(I128));
        assert_eq!(I128.double_width(), None);
        assert_eq!(F16.double_width(), Some(F32));
        assert_eq!(F32.double_width(), Some(F64));
        assert_eq!(F64.double_width(), Some(F128));
        assert_eq!(F128.double_width(), None);
    }

    #[test]
    fn vectors() {
        let big = F64.by(256).unwrap();
        assert_eq!(big.lane_bits(), 64);
        assert_eq!(big.lane_count(), 256);
        assert_eq!(big.bits(), 64 * 256);

        // Check that the generated constants match the computed vector types.
        assert_eq!(I32.by(4), Some(I32X4));
        assert_eq!(F64.by(8), Some(F64X8));
    }

    #[test]
    fn dynamic_vectors() {
        // Identification.
        assert_eq!(I8X16XN.is_dynamic_vector(), true);
        assert_eq!(F32X8XN.is_dynamic_vector(), true);
        assert_eq!(F64X4XN.is_dynamic_vector(), true);
        assert_eq!(I128X2XN.is_dynamic_vector(), true);

        // Lane counts.
        assert_eq!(I16X8XN.lane_count(), 0);
        assert_eq!(I16X8XN.min_lane_count(), 8);

        // Change lane counts
        assert_eq!(I8X8XN.by(2), None);

        // Conversions to and from vectors.
        assert_eq!(I8.by(16).unwrap().vector_to_dynamic(), Some(I8X16XN));
        assert_eq!(I16.by(8).unwrap().vector_to_dynamic(), Some(I16X8XN));
        assert_eq!(F16.by(8).unwrap().vector_to_dynamic(), Some(F16X8XN));
        assert_eq!(I32.by(4).unwrap().vector_to_dynamic(), Some(I32X4XN));
        assert_eq!(F32.by(4).unwrap().vector_to_dynamic(), Some(F32X4XN));
        assert_eq!(F64.by(2).unwrap().vector_to_dynamic(), Some(F64X2XN));
        assert_eq!(I128.by(2).unwrap().vector_to_dynamic(), Some(I128X2XN));
        assert_eq!(F128.by(2).unwrap().vector_to_dynamic(), Some(F128X2XN));

        assert_eq!(I128X2XN.dynamic_to_vector(), Some(I128X2));
        assert_eq!(F16X4XN.dynamic_to_vector(), Some(F16X4));
        assert_eq!(F32X4XN.dynamic_to_vector(), Some(F32X4));
        assert_eq!(F64X4XN.dynamic_to_vector(), Some(F64X4));
        assert_eq!(F128X4XN.dynamic_to_vector(), Some(F128X4));
        assert_eq!(I32X2XN.dynamic_to_vector(), Some(I32X2));
        assert_eq!(I32X8XN.dynamic_to_vector(), Some(I32X8));
        assert_eq!(I16X16XN.dynamic_to_vector(), Some(I16X16));
        assert_eq!(I8X32XN.dynamic_to_vector(), Some(I8X32));

        assert_eq!(I8X64.vector_to_dynamic(), None);
        assert_eq!(F32X16.vector_to_dynamic(), None);
        assert_eq!(I64X8.vector_to_dynamic(), None);
        assert_eq!(I128X4.vector_to_dynamic(), None);
    }

    #[test]
    fn format_scalars() {
        assert_eq!(I8.to_string(), "i8");
        assert_eq!(I16.to_string(), "i16");
        assert_eq!(I32.to_string(), "i32");
        assert_eq!(I64.to_string(), "i64");
        assert_eq!(I128.to_string(), "i128");
        assert_eq!(F32.to_string(), "f32");
        assert_eq!(F64.to_string(), "f64");
        assert_eq!(R32.to_string(), "r32");
        assert_eq!(R64.to_string(), "r64");
    }

    #[test]
    fn format_vectors() {
        assert_eq!(I8.by(64).unwrap().to_string(), "i8x64");
        assert_eq!(F64.by(2).unwrap().to_string(), "f64x2");
        assert_eq!(I8.by(3), None);
        assert_eq!(I8.by(512), None);
        assert_eq!(INVALID.by(4), None);
    }

    #[test]
    fn as_truthy() {
        assert_eq!(I32X4.as_truthy(), I32X4);
        assert_eq!(I32.as_truthy(), I8);
        assert_eq!(I32X4.as_truthy_pedantic(), I32X4);
        assert_eq!(I32.as_truthy_pedantic(), I32);
    }

    #[test]
    fn int_from_size() {
        assert_eq!(Type::int(0), None);
        assert_eq!(Type::int(8), Some(I8));
        assert_eq!(Type::int(33), None);
        assert_eq!(Type::int(64), Some(I64));

        assert_eq!(Type::int_with_byte_size(0), None);
        assert_eq!(Type::int_with_byte_size(2), Some(I16));
        assert_eq!(Type::int_with_byte_size(6), None);
        assert_eq!(Type::int_with_byte_size(16), Some(I128));

        // Ensure `int_with_byte_size` handles overflow properly
        let evil = 0xE001_u16;
        assert_eq!(evil.wrapping_mul(8), 8, "check the constant is correct");
        assert_eq!(Type::int_with_byte_size(evil), None);
    }
}